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Summary 
 
This chapter outlines various physical methods for the investigation (bulk and surface) 
of different substances – optical and electron microscopy, holography and 
interferometry, laser spectroscopy, holography and interferometry, remote sensing of 
the Earth’s surface. It covers various types of analysis of impurities and tracers at the 
surface or in the bulk of materials, different aspects of applied nuclear physics in 
elemental analysis of substances, and their industrial, biological and environmental 
(monitoring) applications. 
 
1. Introduction 
 
Surface characterization means knowledge of the physical properties of the surface of 
objects, including their roughness, chemical composition, atomic structure, structure of 
surface defects, and so on. On the atomic and sub-atomic level, an investigation of the 
surface state can be performed by different techniques – optical and electron 
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microscopy, tunneling and force microscopes. The nuclear microprobe provides 
elemental analysis at the submicron level. 
 
Generally speaking, the term surface examination can be applied not only to 
microsystems but also macrosystems, for instance, study of the Earth’s surface, i.e. 
global examination of its lands, mountains, oceans and seas, and even atmosphere. 
Modern imaging systems also provide characterization of the bulk of various objects 
under examination. 
 
For many years, optical measuring techniques have provided detailed and 
comprehensive information concerning not only the morphology of objects, but also in 
the fields of heat and mass transfer, and fluid dynamics. The high spatial and temporal 
resolution of the measurements enables great insight to be gained concerning the 
thermo- and fluid dynamical properties of a given system. Optical methods also supply 
valuable evidence on the formation of phase interfaces, on particle movement, and on 
the size distribution of droplet swarms. One of the most fruitful optical techniques is 
holography, which allows various interferometric methods for measuring processes of 
heat and mass transfer to be used. 
 
One of the major problems of modern technology is the high purity often required in the 
starting materials used in a given process. Tolerable impurity limits can be as low as 10-

12 of the main matrix mass. The ability to measure concentration of trace elements is 
thus of fundamental importance. Interest in trace elements, especially in biological and 
environmental systems, has been steadily increasing during the last few decades. 
Important fields of interest are animal, human and plant biology, food production, 
medicine and environmental pollution. The interest in trace elements covers toxic 
elements as well as essential elements, some of which may also occur in toxic 
concentrations. Another important aspect of trace elements in both organic and 
nonorganic matrices is that they sometimes display a specific pattern (often called 
fingerprint), which may be indicative of the origin or the history of a sample. 
 
Efforts in space research have similarly led to scientists seeking possibilities for 
checking ideas regarding star evolution, starting from investigation of details of the 
Earth’s own satellite – the Moon. Samples of lunar soils and dust have been subjected to 
many tests, the determination of elemental abundance being one of the main interests of 
such studies. 
 
One of the most fruitful approaches in such determination has been activation analysis 
that will be considered in Section 7.2. 
 
2. Optical Microscopy 
 
The optical microscope is perhaps the most widely used scientific instrument. Although 
they can image tiny objects such as bacteria and cells, the resolution of optical 
microscopes is limited by the value of the wavelength of visible light; the highest 
resolution of optical microscopes is only 0.2 µm. In order to probe atomic structure, 
another illumination source with a shorter wavelength is needed, and such a possibility 
is provided by particles with nonzero mass – electrons, neutrons, ions of different 
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elements. 
 
In any form of microscopy, there are two basic elements that must be present. First, for 
an image to be formable there must be some respect in which the events occurring in the 
specimen vary from point to point; this variation supplies the contrast mechanism of the 
microscopy in question. Second, the arrangement of optical devices and detectors 
observing the events (or in scanning systems the manner in which the particles inducing 
the events are delivered to the specimen) must allow a detected event to be accurately 
referred to the point in the specimen at which it occurred; this arrangement supplies the 
imaging system of the microscopy. 
 
2.1. Historical Development 
 
The first compound microscopes appeared in Holland around the end of the sixteenth 
century and their invention is usually attributed to the spectacle maker, Hans Jansen. 
However, Dutch microscopist Antoni van Leeuwenhoek is also often cited as the father 
of microscopy, since the single-lens instruments he pioneered from about 1670 
(essentially high-powered magnifying glasses) were superior in performance to the 
compound instruments until about or even after 1800. In the first few decades of the 19th 
century, lenses corrected for chromatic and spherical aberrations were being developed, 
notably by the British amateur scientist J.J. Lister. This work culminated in the designs 
of German physicist Ernst Abbe who also formalized the theory of image formation in 
1877. By 1880 instruments were in use which had attained the theoretical limit of 
resolution for light microscopy. The most significant development in the 20th century 
was the development by Zernike in the 1930s of "phase contrast" microscopy, allowing 
details to be seen in thin transparent sections which are almost invisible using standard 
microscopy. 
 
2.2. Resolution Limits and Aberrations 
 
Parallel light rays arriving at the lens will not be focused to an infinitely small point. 
The ray optics model presented in Figure 1 ignores the wave-nature of light. Light 
waves consist of oscillating electric and magnetic fields, whose strength or "amplitude" 
varies as a function of position and time. At a given moment in time, the electric field of 
a parallel beam of light may be thought of as a "plane wave" — a series of peaks and 
troughs in amplitude running perpendicular to the direction of propagation. The distance 
between two peaks is the wavelength λ and for visible light it is around 500nm. A 
property of waves is that they interfere with each other; the crest or peak of one wave 
coinciding with the trough of another will result in a canceling out of the amplitudes of 
both waves, whereas two peaks coinciding doubles the amplitude. 
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Figure 1: Focusing of parallel light to a point 
 
This means that many plane waves arriving towards a point from different angles 
combine to yield complicated interference patterns, with localized intensity maxima and 
minima. However, Abbe showed that no combination of waves of a given wavelength 
can be found which concentrates all the intensity into a zone whose size is less than 
about λ/2. This size is achieved if plane waves of equal amplitude arrive towards a point 
from all directions. The action of the lens can be seen as breaking up the incident plane 
wave into a range of plane waves all arriving at the focal point from different angles. 
The greater the angle subtended by the lens at its focal plane, the greater is the range of 
angles contributing (Figure 1). A plane wave arriving at a lens, will thus be focused into 
a disc (known as the Airy disc) at least λ/2 in diameter, no matter how good the lens is. 
But this size will increase if the lens diameter is small compared to its focal length or if 
a small aperture is centered on the principal axis close to the lens. In addition there will 
subsidiary maxima in the form of rings around the central disc caused by the 
interference of waves scattering or "diffracting" from the edge of the lens, or aperture if 
there is one. (The terms "scattering" and "diffraction" are sometimes used almost 
interchangeably, but most authors reserve the use of diffraction to cases in which the 
scattered waves interfere with each other to cause intensity peaks and troughs). 
 
Similarly, light emitted or reflected from a particular point on the object will be focused 
not to a perfect point but into a blurred disc, again, at least λ/2 in diameter. The 
resolving power of the lens approaches this theoretical optimum as the ratio of its 
diameter to its focal length increases. Conventionally, objective lenses are classified in 
terms of their numerical aperture (NA) which is defined by the relation  
 

sin ,NA
n
α

=  

 
where α is the half angle subtended by the lens at its focal point and n is the refractive 
index of the medium between the lens and its back focal plane — see Figure 2. 
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Figure 2: Definition of the numerical aperture, NA 

 
Modern objectives combine very short focal lengths with wide acceptance angles 
leasing to values of sin α approaching 0.9. This is in practice the maximum value that 
can be achieved in air (n = 1) but "immersion lenses", designed to function with a film 
of high refractive index (n = 1.5) oil occupying the space between lens and sample (or 
cover slip) can increase NA to about 1.4. Such a lens will reproduce detail down to the 
scale of about 0.2 µm. 
 
2.3. Soft X-ray Microscopy 
 
For years physicists have wanted to construct an X-ray microscope that would exploit 
the ability of soft X-rays to detect small structures. The need for such an instrument is 
clear. As mentioned above, the resolution of light microscopes is limited by the 
comparatively long wavelength of visible light. And transmission electron microscopes, 
although they have a much higher resolution, are weak in penetrating power and are 
therefore limited to very thin specimens. Moreover, in transmission electron microscopy 
the biological specimen is usually stained and mounted in a vacuum chamber. 
 
Between ultraviolet radiation and short-wavelength X-rays lies the soft or long-
wavelength X-rays (1 – 10 nm).Until the 70s of XX century researchers had worked 
little with this radiation, primarily because it was difficult to generate in the laboratory. 
 
X-rays traditionally have been generated by accelerating electrons and slamming them 
into a solid target. The efficiency of this method is quite low – typically <10-3 of the 
electron energy is converted to X-rays. It is even lower for soft X-rays, which tend to be 
absorbed in the target.  Hot plasmas, generated by high-power lasers or electric 
discharges, produce soft X-rays copiously, but these sources are not in common use. 
Synchrotron radiation comes close to being the ideal universal source because of its 
intensity, tunability, and small size and divergence. 
 
Soft X-rays have proved to be useful in analyzing the structure of objects that range in 
size from the chromosome of the living cell, through the hot plasma in fusion 
experiments to the corona of the sun. 
 
Soft X-ray photons interact with matter chiefly through absorption. The variation of the 
number of absorption events from point to point in the specimen provides the contrast 
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mechanism of soft X-ray microscopy. In the transmission X-ray microscope (TXM) the 
variation is detected by counting the transmitted photons. It is possible to do X-ray 
microscopy by counting showers of secondary particles rather than unabsorbed photons. 
There are two cases to be distinguished, according to whether electrons or photons are 
detected; the former is electron-emission X-ray microscopy (EXM) and the latter is 
fluorescence X-ray microscopy (FXM). Because of the difference in range of the 
particles, FXM detects showers occurring anywhere within moderately thick specimens, 
while EXM detects only showers occurring within a few nanometers of a surface of the 
specimen facing the detector. EXM is thus potentially useful as a method of surface-
layer microscopy. In addition, because of the variation of fluorescence yield with Z, 
FXM is mainly useful for the imaging of medium- or high-Z features. We may note 
finally that the shower-counting microscopy is dark field (features are bright against a 
dark background) and that absorption microscopy is bright field (dark features against a 
bright background). 
 
The simplest method of imaging is a contact X-ray microscopy. Behind the specimen is 
a screen, X-ray resist, or film that records the intensity of the X-rays that pass through 
it. 
 
 
- 
- 
- 
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