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Summary 

 

This chapter presents an overview of the ways and areas where power electronics has 

been used in power systems. Virtually every aspect of the operation of a modern power 

system has been impacted by power electronics. This is particularly prevalent in 

transmission and distribution systems. Significant improvements in the performance and 

stability of power systems have been obtained by introducing power electronic 

equipment with rapid and precise controllability.  

 

The chapter presents power electronic applications in ac transmission systems, where 

they have been used for such purposes as reactive power compensation, voltage profile 

enhancement, power factor correction, active and reactive power flow control and 

stability enhancement, among other things. Modern high-voltage dc transmission 

systems, which are entirely enabled by power electronics, are also presented. The 

chapter also presents power electronics in distribution systems and what is commonly 

referred to as custom power.  

 

Proper representation of power electronic converters in power systems simulation tools 

calls for specialized techniques that ensure high accuracy with suitable computational 

intensity. Modeling aspects of power electronic converters, particularly for 

electromagnetic transient (EMT) simulation, conclude the chapter. 

 

1. Introduction 

 

Since the demonstration of lighting the World‟s Fair in Chicago in 1893 with electricity 

generated from Niagara Falls, Nikola Tesla‟s concept of electric power generation in 

one location and its transmission for use at other locations has been a worldwide reality. 

Generation of electricity in modern electric power systems has customarily been done at 

a practically feasible high voltage. For transmission over long distances, the voltages are 

stepped up to high levels using power transformers that allow low-current and low-loss 

transmission. Finally, they are stepped down to lower voltages, again using 

transformers, for distribution over relatively short distances to reach various loads.  

 

In an interconnected transmission system the electric power from the source flows to the 

loads through the paths of least impedance. This somewhat arbitrary flow of electricity 

may operate the electric transmission system in an inefficient way for the following 

reasons. 
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 Transmission lines carry useful active power and less desirable reactive power. 

Although these two components are required by the load, the latter causes 

undesirable line losses, and hence lower efficiency.  

 Due to free flow of power, a number of lines may reach their power rating limits 

before the rest of the system. This may require tripping the overloaded lines. 

 When an overloaded line trips, some previously under-loaded lines will have to 

pick up the load and, in the process, may become overloaded. The newly 

overloaded lines may also trip, leading to a cascaded failure and a possible 

blackout. 

 

Fortunately, the flow of electricity in a particular transmission line can be controlled 

with the use of a power flow controller (PFC), which regulates the parameters that 

affect the flow of power, namely magnitude and phase angle of the line voltage and the 

line reactance. Solutions based on power electronics have given system operators the 

ability to influence these parameters effectively, rapidly and with precision, thereby 

allowing them to control and designate power flow throughout the network.  

 

The demand for electrical energy around the world is increasing continuously and the 

construction of new transmission lines is, at the same time, becoming increasingly 

difficult because of various reasons, such as regulatory and environmental constraints, 

and public policies, as well as their escalating cost. The power industry is in constant 

search for the most economic ways to transfer bulk power along a desired path. The 

ever-growing need for electricity transmission can also be met, for the time being, by 

using the existing lines in a more efficient way to carry maximum active power at a 

minimal reactive power. 

 

Power electronics is an exciting field of research and development that has been able to 

provide answers to some of the most difficult challenges faced by the power systems 

industry. Power electronics has enabled development of advanced compensators that 

can rapidly and precisely control the flow of active and reactive powers, control the 

voltage profile of the network, and offer additional benefits such as improved network 

stability. As a result, conventional ac transmission systems have become more efficient, 

more responsive, and more capable of carrying additional load.  

 

Power electronics has also played a key role in the transmission of electricity. Ac 

transmission has been the dominant form in most electric power systems. Alternatively, 

one can transmit electric power by converting the generated ac power to dc for 

transmission at high dc voltages, and back to ac at the end of the line for distribution. In 

the so-called high-voltage dc (HVDC) scheme the dc line needs to carry only the active 

power and no reactive power, thereby eliminating line losses due to reactive power flow 

and increasing line utilization when compared with an ac transmission system.  

 

For this concept to be economically viable, however, the line needs to be of a minimum 

length, since the two stages of conversion – ac-dc and dc-ac – cost significantly more 

when compared with an ac transmission system where no such conversions are required. 

Early day‟s HVDC systems involved the use of mercury-arc valves for both ac-dc and 

dc-ac conversions. 
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Another area in which power electronics has played enabling and crucial roles is 

interfacing renewable energy sources, such as wind and solar, into the grid. This has 

also enabled micro-grids and has gained power electronics a footing in distribution 

systems and what is termed as the custom power. Figure 1 shows a schematic diagram 

of the major areas where power electronics is used in power systems. 

 

Advances in semiconductor technology and modern control techniques have made it 

possible to implement the above concepts with currently available devices. 

Development continues for faster switches with higher ratings, their control techniques, 

and their temperature control and packaging techniques, leading to a well-established 

field of power electronic applications in power systems. 

 

1.1. An overview of power electronic applications in power systems 

 

Control of the power flow in an electric power system involves control of the magnitude 

and phase angle of the voltage at certain points in the system. This was, for example, 

accomplished in the past by using a synchronous condenser, which connects the back 

emf of a synchronous motor in shunt with the transmission line. This is done via a tie 

inductor, which is composed of the machine reactance and the leakage reactance of the 

coupling transformer. By adjusting the field of the machine its terminal voltage is 

controlled, which in turn allows control of the reactive power or voltage at the point of 

common coupling with the transmission line. 

 

 
 

Figure 1. Power electronics in power systems. 
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It was known for a long time that using highly controllable voltage sources affords the 

same benefit. Power electronics has been the enabling technology that has replaced the 

bulky, slow, and high maintenance compensators of the past with compact, fast, and 

high-performance compensators of the today. For instance, the concept of a 

synchronous condenser has been extended with the use of a voltage-sourced converter 

(VSC)-based static synchronous compensator (STATCOM) that connects an 

electronically-generated sinusoidal voltage (with some harmonic components) in shunt 

with the transmission line through a tie inductor. The VSC used in a STATCOM is the 

controllable voltage source that enables such an undertaking. In 1995, Westinghouse 

installed a 100 MVA-rated STATCOM at the Tennessee Valley Authority Sullivan 

substation in the state of Tennessee, USA. This STATCOM can respond to a 100 Mvar 

step-change in reference input in only a few milliseconds. Whether the utility needs 

such a fast (sub-cycle) response remains a debatable point. However, this virtue of a 

STATCOM has proven to be useful in compensating fast-acting random loads, such as 

electric arc furnaces, stone crushers, and so on. 

 

The VSC-based concepts (Kundur, 1994; Hingorani & Gyugyi, 2000; Sen & Sen, 2009) 

were further developed to include static synchronous series compensator (SSSC), 

unified power flow controller (UPFC), back-to-back STATCOMs, also known as VSC-

based high voltage direct current (VSC-HVDC), and back-to-back SSSCs, also known 

as the interline power flow controller (IPFC), for transmission applications. Also 

developed were dynamic voltage restorers (DVR) (Gyugyi, Schauder, Edwards, & 

Sarkozi, 1994) and distribution STATCOMs (D-STATCOM) for distribution 

applications. These ideas became suitable for implementation for the first time in the 

1990s due the availability of high power semiconductor switches, such as 4500 V, 4000 

A-rated gate turn-off (GTO) thyristors. The semiconductor switches that are used in the 

implementation of a VSC are fully controllable, meaning the switches can be turned on 

and off at a desired time. Besides GTO thyristors, other high-power rated switches 

available for these applications are integrated gate commutated thyristors (IGCT), and 

press-pack insulated gate bipolar transistors (IGBT). A new definition, namely flexible 

alternating current transmission systems (FACTS), was adopted as alternating current 

transmission systems incorporating power electronic based and other static controllers 

to enhance controllability and increased power transfer capability. 

 

The key to independent control of active and reactive power flows in a transmission line 

is to control both the magnitude and phase angle of the transmission line voltage 

simultaneously. This can be achieved with either shunt-series or shunt-shunt 

configurations. The shunt-series configuration, employed as a UPFC and shown in 

Figure 2, consists of two VSCs with a common dc link capacitor. The two VSCs are 

connected to the same transmission line through two coupling transformers: one 

connected in shunt and other connected in series. The transfer of active power from one 

line to another can be achieved with the use of the shunt-shunt configuration as shown 

in Figure 3, which consists of two dc-ac VSCs, each of which is connected in shunt with 

the transmission line through a coupling transformer. Both the VSCs are connected at 

their shared dc link. This configuration in electric utility applications is known as back-

to-back STATCOM (BTB-STATCOM). 
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Figure 2. Shunt-series configuration (UPFC). 
 

 
Figure 3. Shunt-shunt configuration (BTB-STATCOM). 

 

The most important and unique feature of the shunt-series configuration is that for a 

given amount of transmitted power, the series compensating unit has a large ratio 

between its own rating and the controlled transmission line power and it needs to be 

rated for only a fractional amount of transmitted power, whereas the shunt 

compensating unit in the shunt-shunt configuration has no such leverage and it needs to 

be rated for the full amount of transmitted power. Because of this uniqueness, the shunt-

series connection is a preferred configuration for a power flow controller in many 

applications. In certain special cases for point-to-point transfer of power between two 

isolated networks with different voltages, phase angles, or frequencies, the use of the 

shunt-shunt connection still remains the preferred configuration. In 2000, ABB installed 

a 36 MVA-rated BTB-STATCOM at the American Electric Power Eagle Pass 

substation in the state of Texas, USA. 

 

In 1998 Westinghouse installed a 160 MVA-rated FACTS controller at the American 

Electric Power Inez substation in the state of Kentucky, USA (Renz et al, 1999). This 

installation can be reconfigured into nine different modes of operation, namely various 

combinations of STATCOM, SSSC, and UPFC. This UPFC demonstrated for the first 

time that active and reactive power flows in a transmission line could be regulated 

independently while maintaining a fixed line voltage at the point of compensation. 

Simultaneous control of active and reactive power flows and independent control of 

active and reactive power flows are shown in Figures 4 and 5, respectively. 

 

Independent control of active and reactive power flows leads to several benefits 

including the following: 

 

 reduction in reactive power flow, resulting in reduction of losses in generators, 

transformers and transmission lines, which increases the system efficiency; 
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 freeing up the generators, transformers and transmission lines to carry more active 

power; 

 power flow through the desired transmission paths that have high impedances, low 

power flow, and low line utilization; 

 avoiding grid congestion by redirecting excess power flow from an overloaded 

line to under-loaded lines, instead of tripping the overloaded line when power is 

needed the most; 

 delaying the building of new, expensive, high-voltage electric transmission lines. 

 

Within 5 years of its first installation, two more UPFCs were built (Fardanesh et al, 

1998; Choo et al. 2002), using Westinghouse‟s technology. The selected VSC topology 

was based on multi-pulse harmonic neutralization (MPHN) techniques. The power loss 

in a VSC is defined as the total power consumed by various components of a VSC 

while carrying the rated current at rated voltage.  

 

A MPHN-VSC with GTO devices switching once per cycle has about 1.5% power loss 

under rated condition. That means, for a UPFC that consists of two VSCs, the power 

loss is about 3%. The power loss in a single PWM-operated VSC is about 4%. 

Therefore, for a UPFC that is made out of two PWM-operated VSCs, the power loss is 

about 8%. This makes the operating cost of a VSC-based UPFC to be the highest among 

the available power flow solutions.  

 

In addition to high installation and operating costs, high losses due to switching of 

power semiconductor devices has been a major obstacle in wide-spread adoption of 

power electronics-based compensators particularly, when the converters are expected to 

carry large amount of power. Improved waveform-synthesis techniques and novel 

converter topologies have been pursued as solutions. Development in both areas 

continues as power electronics opens up new horizons of application in power systems. 

 

 
 

Figure 4. Simultaneous power flow control by changing only one control parameter. 
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Figure 5. Independent power flow control by changing both control parameters (voltage 

magnitude and phase angle). 

 

One of the great features of a VSC is its fast (sub-cycle) response time. Figures 4 and 5 

show that the response time of actual equipment is in the order of seconds. Since the 

utility most likely does not need the sub-cycle response, the FACTS controllers are 

marginally designed to lower their cost (Sen & Sen, 2003b), which is already an order 

of magnitude higher than the comparable transformer/tap changer-type solution, namely 

Sen Transformer (ST) that is at just right cost to fulfill the utility power flow 

requirement (Sen & Sen, 2003a), see Figure 6. Since the power flow control needs 

change with time, a PFC may be designed with portability in mind for easy relocation to 

wherever it is needed the most. Once installed, it is practically impossible to relocate a 

VSC-based FACTS controller. 

 

 
 

Figure 6. Sen transformer. 
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Just like any other evolving technology, power electronic compensators are facing their 

own challenges. For example, VSCs are considered to have operating life spans of 25 to 

50 years. However, within the first decade, most electronic components became 

obsolete, reducing the expected life-time greatly. Their high installation and operating 

cost and typically high losses are also major factors that need to be resolved.  

 

1.2. Evolution from thyristor-based compensators to fully-controlled VSC-based 

systems 

 

Transmission of power in a single line with a sending-end voltage, sV  (of magnitude, 

sV , and angle, s ), and a receiving-end voltage, rV  (of magnitude, rV , and angle, r ), 

connected by a line reactance ( X ) and the related phasor diagrams are shown in Figure 

7. Ignoring the line resistance, the natural voltage, XnV  (i.e., s rV V ), across the line 

reactance ( X ) is the difference between the sending- and receiving-end voltages. The 

resulting line current ( I ) lags the voltage ( XnV ) by 90

. The natural or uncompensated 

active and reactive power flows ( snP  and snQ ) at the sending end and ( rnP  and rnQ ) at 

the receiving end are: 

 

sn rn n sinP P A    (1) 

 

 sn n s r/ cosQ A V V      (2a) 

 

 rn n r scos /Q A V V     (2b) 

 

where n s r /A VV X  and s r    . 

 

The power flow control parameters are transmission line voltage magnitudes ( sV  and 

rV ) at its sending- and receiving-ends, their phase angles‟ difference ( ), and line 

reactance ( X ). Any of these parameters can be controlled individually with the use of 

the following, now considered conventional, equipment: 

 

 Voltage regulation: voltage regulating transformer (VRT), shunt or parallel-

connected switched inductor/capacitor, static var compensator (SVC), or static 

synchronous compensator (STATCOM) as shown in Figure 8. 

 Phase-angle regulation: phase angle regulator (PAR) or phase shifting transformer 

(PST) as shown in Figure 9. 

 Line reactance regulation: thyristor-controlled series capacitor (TCSC) as shown 

in Figure 10. 

 

For more than a century, the transmission line voltage has been regulated with 

transformers and tap changers. They are referred to as the VRT in the form of a two-

winding transformer with isolated windings or an autotransformer with electrical 

connection between the windings. In both cases, the magnitude of the line voltage is 

regulated. The secondary voltage is varied with the use of load tap changers (LTCs) 
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(Faruque & Dinavahi, 2007). A LTC can step up/down the voltage without interruption 

of the load current. Both primary and secondary windings in the two-winding 

transformer carry the full transmitted power. Both primary and secondary windings in 

the autotransformer carry only a fraction of the full transmitted power.  

 

 
 

Figure 7. Simple power transmission system and the related phasor diagram. 

 

 

 
 

Figure 8. Transmission line voltage regulators. 

 

An indirect way to regulate the line voltage is to connect an inductor or a capacitor in 

shunt with the transmission line. A shunt-connected inductor absorbs reactive power 

from the line and lowers the line voltage, whereas a shunt-connected capacitor raises the 

line voltage with its generated reactive power. The static var compensator (SVC) 

connects fixed capacitors in a step-wise manner in shunt with the line through thyristor 

switches and also connects an inductor in shunt with the line through thyristor switches 

whose duty cycle can be varied, thereby making it function as a variable inductor. In an 

SVC the reactive power is generated by the ac (controlled) inductors and (switched) 

capacitors. The reactive power capability of a SVC is therefore impacted by not only the 
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size of these reactive components but also the magnitude of the ac voltage at their 

terminals. An alternative way to compensate reactive power is to use a VSC-based 

STATCOM that connects an electronically-generated sinusoidal voltage (with some 

harmonic components) in shunt with the transmission line through a tie inductor. This 

rids the system from inductive reactive power from ac reactive components and relies 

on the crafted voltage to supply or absorb reactive power.  

 

 
 

Figure 9. Transmission line voltage phase angle regulator. 

 

 
 

Figure 10. Thyristor-controlled series capacitor for transmission line reactance 

regulation. 

 

The power flow in a transmission line has also been regulated with the use of the PAR. 

The line voltage is applied to the primary windings and the induced secondary voltage 

that is varied with the use of LTCs is connected in series with the line. Through the use 

of the TCSC, a series-connected variable capacitor or a variable inductor can be 

implemented. As a result, both the magnitude and the phase angle of the line voltage are 

varied simultaneously. 

 

An ideal power flow controller controls the above-mentioned power flow control 

parameters simultaneously to regulate the magnitude and the phase angle of the line 

voltage independently. As a result, the active and reactive powers in the line can be 

controlled independently. This is accomplished by adding a series-connected 

compensating voltage to the original voltage with the use of the shunt-series 

configuration as shown in Figure 11. The series-connected compensating voltage is of 

variable magnitude and phase angle; it is also at any phase angle with the prevailing line 

current. Therefore, it exchanges active and reactive powers with the line. When VSCs 
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are used, only the exchanged active power ( exchP ) flows bi-directionally through the 

shared link to and from the same transmission line under compensation; both shunt- and 

series-connected VSCs can also provide independent reactive power compensation at 

their respective ac terminals. 

 

 
 

Figure 11. Independent active and reactive power flow controller using a shunt-series 

configuration. 

 

The concept of a shared dc link between a shunt-connected VSC and a series-connected 

VSC was first introduced in the active power line conditioner (APLC) for distribution 

power level applications (Stacey & Brennen, 1987; Brennen & Banerjee, 1994). 

Realization of Figure 11 by shunt-series-connected VSCs (UPFC) was implemented in 

the UPFC for transmission power level applications as shown in Figure 2. The series-

connected VSC that is rated for a fraction of the line voltage carries the full line current. 

The shunt-connected VSC that is rated for the full line voltage carries only a fraction of 

the line current. Therefore, each VSC carries only a fraction of the full transmitted 

power. For example, a shunt-series configuration with a series-connected compensating 

voltage of 0.1 pu (max.), delivering a line current of 1 pu, requires the series-connected 

compensating voltage to be rated at 0.1 pu voltage and 1 pu current; the shunt-

connected exciting voltage is rated at 1 pu voltage and 0.1 pu current. Therefore, the 

combined power rating of the two voltage sources is 0.2 pu. As a special case, when the 

dc link capacitors of the two VSCs are not connected together, both the shunt-connected 

VSC (STATCOM) and the series-connected VSC (SSSC) provide independent reactive 

power compensation at their respective ac terminals and there is no exchange of active 

power between them. 

 

The concept of the shunt-series configuration can be further extended to include the use 

of a shared magnetic link in which the compensating voltage is generated from either an 

electrical machine or a transformer with LTCs. In this case, both the exchanged active 

power ( exchP ) and reactive power ( exchQ ) flow bidirectionally through the shared 

magnetic link. All shunt-series configurations are electrically connected to the same 

power system network; therefore, both the shunt and series units operate at the same 

frequency. 

 

The compensating voltage in an autotransformer is in phase (0
ο
) or out of phase (180

ο
) 

with the line voltage and, therefore, regulates the magnitude of the transmission line 
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voltage. The compensating voltage in the PAR is in quadrature (+90
ο
 or –90

ο
) with the 

line voltage and, therefore, regulates the phase angle of the transmission line voltage. 

The Sen transformer (ST), as shown in Figure 12, creates a series compensating voltage 

that is variable in magnitude and phase angle and can control the transmission line 

voltage in both magnitude and phase angle in order to achieve independent control of 

active and reactive power flows in the line. This compensating voltage may be thought 

of as two orthogonal compensating voltages of a separate autotransformer and a PAR. 

Therefore in the ST, the functions of the autotransformer and the PAR are combined in 

a single unit that results in a reduced amount of hardware from what is required for a 

separate autotransformer and a PAR. 

 

The VSC-based technology has the capability of providing fast (sub-cycle) dynamic 

response for a given transmission line impedance, although in a PFC the dynamic 

response of at least a few line cycles is necessary to operate safely under contingencies. 

Most utility applications in the ac system allow regulation of the power flow in the 

line(s) in a “slow” manner as permitted by the mechanical contacts in the LTCs. If faster 

response is needed, the mechanical LTCs can be replaced with faster LTC switches 

(EPRI Report, 2000). 

 

 
 

Figure 12. Realization of Figure 11 by transformer/tap changers (Sen transformer). 

 

The magnitude and phase angle of the transmission line voltage can also be controlled 

independently by a shunt-connected compensating voltage, using the shunt-shunt 

configuration as shown in Figure 13. This concept dates back to the time when rectifiers 

and inverters were introduced to convert ac power from one voltage and frequency level 

to another with active power ( exchP ) transfer through a dc link. The most frequently used 

topology is an ac-dc rectifier followed by a dc-ac inverter for variable speed motor 

drives and, if combined with local energy storage, an uninterruptible ac power supply. 

To improve the power quality at the rectifier‟s ac terminal and to accomplish 

bidirectional power flow, two dc-ac inverters are connected back to back via their 

shared dc links as shown in the Figure 3. 
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Figure 13. Point-to-point transfer of power with local reactive power compensation 

using a shunt-shunt configuration. 

 

The shunt-connected compensating voltage is of variable magnitude and phase angle; it 

is also at any phase angle with the prevailing line current. Therefore, it exchanges active 

and reactive powers with the line. When VSCs are used, only the exchanged active 

power ( exchP ) flows bidirectionally through the shared link; each shunt-connected VSC 

can also provide independent reactive power compensation at its ac terminal and, as a 

result, regulate the voltage of the transmission line at the point of compensation. Each 

shunt-connected VSC is rated for the full line voltage and carries the full line current 

and, therefore, is rated for its full transmitted power. Considering the previous example, 

a shunt-shunt configuration with a shunt-connected compensating voltage of 1.1 pu, 

delivering a line current of 1 pu, requires the shunt-connected compensating voltage to 

be rated at 1.1 pu voltage and 1 pu current; the shunt-connected exciting voltage is rated 

at 1 pu voltage and 1.1 pu current. Therefore, the combined power rating of the two 

voltage sources is 2.2 pu, which is 11 times the power rating of the shunt-series 

configuration. As a special case, when the dc link capacitors of the two VSCs are not 

connected together, both the shunt-connected VSCs (STATCOM) provide independent 

reactive power compensation at their respective ac terminals and there is no exchange of 

active power between them. 

 

The concept of the shunt-shunt configuration can be further extended to include the use 

of a shared magnetic link in which the compensating voltage is generated from either an 

electrical machine or a transformer with LTCs. In this case, both the exchanged active 

power ( exchP ) and reactive power ( exchQ ) flow bi-directionally through the shared 

magnetic link. The point-to-point transfer of power from one line to another with 

different voltages, phase angles, or frequencies can be accomplished with the use of 

shunt-shunt-connected electrical machines. The ST can also generate a shunt-connected 

compensating voltage for the interconnection of two nearby transmission lines with 

different voltages and phase angles, but of the same frequency. 

 

Equations (1) and (2) show that the expressions for active power and reactive power are 

sine and cosine functions, respectively. The variation of active power as a function of 

reactive power is shown in Figure 14. Power angle ( ) in the second, also third and 

fourth (not shown in the figure), quadrants are not used. If the fourth-quadrant operation 

of a shunt-shunt configuration is needed for power flow reversal, note that the shunt-

series configuration can also be used for this purpose. 
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Figure 14. rnQ  vs rnP  at the receiving end of the transmission line for the range of power 

angle   (i.e., s r  ) from 0

 to 180


 when 1 rs VV , and 5.0X , and 0R  

( RX / ). 

 

The shunt-shunt power configuration is capable of controlling the power angle (the 

phase angle between the voltage at the point of compensation and the voltage at the far 

end of the transmission line) over its full 360
ο
 range. The maximum transfer of active 

power along a lossless transmission line (with quality factor  RXQ / ) between the 

sending and receiving ends takes place at the 90
ο
 power angle. At the same time, the 

actual power angle is significantly lower and depends on the line length, system 

characteristics, and load flows. A transmission line with the natural (uncompensated) 

power angle in the range of 15
ο
 to 20

ο
 may have a possible range of compensation of 

additional 5
ο
 to 10

ο
. Therefore, the shunt-shunt configuration is severely restricted to 

operate within the first quadrant when used as a PFC. In contrast, the shunt-series 

configuration requires only a fraction of the power rating of the shunt-shunt power 

configuration and makes the most use of its rating when used as a PFC. 
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Both the ST and UPFC are suitable for independent control of active and reactive power 

flows in a single transmission line in which they are installed. However, several 

transmission lines in close proximity may be connected to a shared voltage bus. 

Therefore, any change in the power flow in one line will affect the power flows in the 

other lines as well. Thus, the excessive power from one specific line cannot be 

transferred directly to another specific line. In a multiline transmission network, it 

would be advantageous to be able to transfer power from an overloaded to an under-

loaded line with minimum undesirable impact on the power flows in the other 

uncompensated lines. 

 

The shared dc link concept can be extended for power exchange between transmission 

lines with series-series-connected VSCs. The BTB-SSSC, shown in Figure 15, consists 

of at least two VSCs, each of which is connected in series with a transmission line. All 

the VSCs are connected at their shared dc link. The BTB-SSSC transfers active power 

from one or more transmission lines, referred to as “master” lines, to the others, referred 

to as “slave” lines, and provides independent series reactive power compensation in 

each line. A BTB-SSSC selectively controls the active and reactive power flows in each 

line in a multiline transmission system and provides a power flow management for the 

transmission system by decreasing the power flow in an overloaded line and increasing 

the power flow in an under-loaded line. The multiline Sen transformer (MST), shown in 

the figure, provides the same functionality. 

 

 
 

Figure 15. Multiline power flow concepts: (a) Back-to-Back SSSC; (b) Multiline Sen 

Transformer. 

 

The summary of choices for transmission line power flow control equipment is shown 

in Figure 16 in chronological order of their introduction. 

 

In summary, mechanically- or electronically-switched static compensators are used as 

FACTS controllers. If any of these compensators regulate only one power flow control 

parameter, active and reactive power flows in the transmission line are controlled 

simultaneously. The power industry‟s present need requires the use of FACTS 

controllers that can independently control the active and reactive power flows in a 

transmission line, decrease the power flow in an overloaded line, and increase it in an 

under-loaded line, while at the same time keeping the system voltage within the 

allowable limits. 
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Figure 16. Choices for transmission line control equipment. 
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