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Summary 

The introduction of railways revolutionized transportation and changed the economic 
geography of the world. Higher speeds, greater comfort, and lower costs allowed the 
railroads to dominate transportation for more than a century. However, the railways lost 
much of their allure with the introduction of automobiles, trucks, and air transportation. 
The inevitable shrinkage of rail markets left many rail networks in poor condition, both 
financially and physically, necessitating government ownership in most countries. 
Public support of railroads has been justified for various reasons, including support of 
local industry, promotion of energy conservation, and as an alternative to congested 
highway-based systems. 

 
This article provides an overview of the engineering, operating, and competitive issues 
facing railroads. Understanding both the potential for and the limits of rail service is 
necessary in considering the role for rail in achieving mobility and sustainability goals. 
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Although rail is no longer dominant, there are clearly markets where rail can still be 
very successful. High-speed passenger services can, for some corridors, compete 
effectively with both airlines and autos, while modern, heavy-haul freight services are 
well suited for long distance, high volume shipments. Intermodal services are attractive 
both for freight and for passenger services, especially if there are efficient terminals for 
transferring between rail and other modes of transportation. 

1. Introduction 

Railroads transformed the world in the nineteenth century and supported the industrial 
expansion of the early twentieth century, then declined in the face of airline and 
highway competition. To survive, railroads were forced to rationalize their systems, 
develop more efficient operations, and introduce new services. At the turn of the 
twenty-first century, railroads remain dominant for bulk transportation, provide the 
backbone of rapidly growing intermodal freight services, and compete successfully with 
airlines in medium distance markets. Highway congestion, limited airport capacity, and 
environmental concerns guarantee a continued role for rail systems in the twenty-first 
century. 
 
The introduction of railways reduced transportation costs and travel times by an order of 
magnitude, changing the economic geography of the world forever. Railways integrated 
continents, escaping geographic constraints dictated so long by the location of ports and 
inland waterways. Cheaper transportation meant remote sources for raw materials and 
broader markets for products, enabling economies of scale by consolidating production. 
Railways favored the development of cities that were larger or better located in relation 
to railroad development and diminished the fortunes of those that were bypassed. In 
North America, railways enabled rapid development of the Midwest and West. Chicago 
became the “Metropolis of the American West” and the largest rail hub in North 
America, quickly surpassing St. Louis and the other cities along the Mississippi River. 
In South America and Africa, railways opened up the interiors of the countries, often 
enabling the export of coal, ore, or agricultural products. In China and India, railroads 
provided the transportation links necessary to connect large national economies. 
 
Railroads required vast amounts of capital. The possibilities and opportunities were 
evident to investors, despite a suspicion that profits were in construction rather than in 
operation of lines. While many companies failed in the recessions and panics of the 
nineteenth century, the best of the survivors were highly profitable. Railroads became 
the first industrial superpowers, inventing management structures as they expanded, 
establishing vast communication networks, and using military discipline to control 
operations over thousands of route-miles. 
 
Railway expansion continued worldwide into the twentieth century. The expansion of 
the railways was finally slowed or stopped by international turbulence and violence. The 
railways, like the countries they served, suffered from the devastations of two world 
wars, the resulting shrinkage of world trade, and the financial and social disruptions of 
the Great Depression. By the end of World War II, railways were at best worn out and at 
worst destroyed. Massive investment was needed to revitalize the systems; where such 
investment was unavailable, the systems were destined to a slow, but certain decline. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

TRANSPORTATION ENGINEERING AND PLANNING – Vol. I - Railroad Transportation – Carl D. Martland 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

 
The turmoil of war and depression masked the emergence of new modes of 
transportation. Military logistics dominated freight transport, and military needs 
suppressed the growth of highway transportation. With peace came the realization that 
railways were too slow and unreliable to withstand the appeal of automobiles, the speed 
of airplanes, and the flexibility of trucks. The strategic question was how best to 
respond: whether to hang on to the old systems, try new approaches, or simply abandon 
the field. The struggle was difficult for railroads, their customers, and towns that were 
dependent upon rail. The loss of markets, price competition, and decaying infrastructure 
frequently led to bankruptcy. 
 
By the end of the twentieth century, railway networks were no longer ubiquitous. Where 
road networks developed, automobiles and trucks carried most of the regional 
passengers and tonnage. For longer trips, trucks captured some of the high value freight 
and airlines most of the passengers. In most countries, the loss of traffic resulted in 
railroad bankruptcies, line abandonment, and government ownership. In North America 
and Australia, where distance favors rail, the railroads survived, but primarily for 
freight; more tonnage was handled, but route-miles and market share declined. In India 
and China, which still lacked modern highway networks and where air transportation 
was expensive, railroads remained dominant and rail capacity was a major concern. In 
Europe, the major concern was for passenger service, although there were hopes for 
freight. In Europe and in Japan, high-speed passenger services connected major cities, 
offering medium distance service superior to airlines. 
 
Despite competition from other modes and the financial collapse of so many railroad 
companies over the second half of the twentieth century, rail remains the mode of 
choice for several important markets: bulk commodities like coal, ores, sand and gravel, 
and grain; long-distance movements of containerizable freight; and medium distance, 
high-density passenger services. Since railroads are generally more energy efficient than 
highway or air transportation, expanded use of rail will reduce both energy consumption 
and emissions of greenhouse gases. As railroads are flexible in their energy choice, 
especially for electrified lines, they are not as oil-dependent as other transport modes. 
Railroads also require less land than highways for rights-of-way, which is important in 
urban and also in environmentally sensitive regions. In undeveloped areas, for instance 
interior regions of South America or Africa, railroads are less intrusive than roads 
because access can be controlled, whereas new roads generally entice new settlement. 
Thus, railways are generally viewed as a key element for sustainable freight and 
passenger mobility in the twenty-first century. 

2. Railroad Technology 

The basic elements of the railway system are the track structure, locomotives, rolling 
stock, terminals, and the control system. The essence of the railway system is the “steel 
wheel on the steel rail,” implying both low rolling resistance and guided transport. With 
a durable, level surface, it is possible to pull a car or, better, a “train of cars” (which is 
how the concept of a train was originally phrased) with a minimum expenditure of 
energy, thereby maximizing the load pulled for a given source of power. 
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2.1. Route and Track Structure 

Route choice is important for engineering and marketing reasons. Engineers balance the 
costs related to distance, curvature, grades, tunnels, and bridges. Marketing concerns 
include the ability to serve current and potential markets, as well as location relative to 
competing lines and modes. 
 
Route selection is dominated by the need for a nearly level route. If grades are too steep, 
tremendous energy will be expended, and the benefits of low rolling resistance will be 
lost. Railroads can operate with grades of 4% (a rise of 4 feet in a distance of 100 feet, 
or 40 m over 1 km), but only with difficulty; normally, the maximum grade is 1–2%. 
Railroad routes therefore tend to follow the natural features of the landscape, using cut 
and fill, tunnels, and bridges as necessary to maintain a nearly level route. Operating 
savings over the life of these circuitous routes justifies the added construction expense. 
 
Train size and speed are limited by engineering factors related to safety and cost. The 
main consideration is that the train stays on the track, despite dynamic interaction 
between the train and the track. Rail and wheels are designed to minimize energy 
dissipation at the wheel/rail interface and to provide strength to resist the forces of the 
operating environment. For any curve, lateral forces are a function of wheel and rail 
profiles, car weight, center of gravity, and train speed. Since the running surface of a 
wheel is conical, the rolling radius increases as lateral forces shift cars toward the 
outside of the curve. This difference in rolling radius allows cars to navigate modest 
curves without initiating flange contact. For sharper curves, the flange comes into 
contact with the rail; at a sufficiently high speed, the lateral forces will cause the wheel 
to climb up and over the top of the rail, causing a derailment. This destructive 
possibility limits train speeds and curvature. 
 
To allow higher speeds, the outside rail can be superelevated, which allows gravity to 
offset some of the lateral forces. The maximum superelevation is determined by the 
requirement that equipment with the highest center of gravity must be able to stop safely 
on the curve, meaning that the gravitational force acting on the center of gravity of the 
car must fall between the rails. Superelevation is problematic in locations where several 
kinds of trains operate at different speeds, such as curves located close to passing 
sidings. Passenger trains may run along such curves at high speeds, whereas low-
priority freight trains will frequently be stopping at the siding. If superelevation is 
maximized for passenger trains, then freight trains will tend to crush the low rail. If 
superelevation is designed to accommodate the low speed freight trains, then the 
passenger trains may have to slow down to negotiate the curves. 
 
Variations in track geometry and stiffness will stimulate dynamic activity and increase 
the probability of a derailment unless speed is reduced. Issues of track/train dynamics 
therefore underlie railway or regulatory standards for track geometry and track strength. 
Track geometry standards define limits for such measures as variation in track gauge 
(distance between the rails), crosslevel (relative height of rails), and vertical or 
horizontal alignment (variation between the center of the track and the design location). 
Track stiffness is a measure of the deflection of the track structure under load. As a train 
moves along the track, there will be a slight deflection of the rail under each wheel; the 
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greater the deflection, the greater the interaction between the equipment and the track 
structure and the more rapid the deterioration of the track geometry and the track 
components. To minimize the risk of derailment, train speeds must be reduced where 
there are significant variations in track geometry or where the track structure is weak. 
Or, from a track standards perspective, the track geometry needs to be better and the 
track structure stronger to support higher speed operation. 
 
Economic considerations may further limit train speeds and track quality. For low-
density lines, minimizing maintenance cost is much more critical than train speed. For 
major freight lines, speeds of 40–70 miles hr–1 (64–112 km hr–1) are almost always 
deemed sufficient, and lower speeds are often acceptable. Higher speeds are desirable 
for intercity passenger operations, requiring better track geometry for passenger than for 
freight operations. 
 
Engineering departments ensure that track geometry and strength are adequate by 
selecting, installing, inspecting, maintaining, and eventually replacing track 
components. A basic challenge is that the “steel wheel on the steel rail” concentrates 
loads in a contact patch that is smaller than 1.5 cm2, creating pressures greater than 
50 000 Mg/m2. The track structure must spread these loads over a wide enough area that 
they will not deform the natural subgrade, which commonly supports only 10–20 
lb/sq.in. While many different approaches have been tried, the typical track structure has 
rail installed on steel tie plates that are attached to wooden or concrete ties (sleepers) 
that are embedded in ballast that may be sitting on a layer of sub-ballast that is sitting on 
the natural sub-grade. The larger the cross-section of the rail head, the better it is able to 
withstand the extreme stress; the larger the tie plates and the better the fastening system, 
the lower the pressure on the ties; the larger and more closely spaced the ties, the lower 
the pressure transmitted to the ballast; and the deeper the ballast and sub-ballast, the 
lower the pressure transmitted to the subgrade. The choice of components determines 
how the pressure is distributed and the maximum loads that can be safely transported 
over the route. 
 
Economic limits will be tighter than safety limits for axle loads in mainline operations, 
because heavier loads increase deterioration rates of some track components. Although 
operating expenses generally decline for heavier loads, these savings may be offset by 
higher expenditures for inspection, maintenance, and replacement of track components. 
Higher quality materials can be used to reduce deterioration, and research has helped the 
industry introduce more durable steel, premium fastenings, concrete ties, premium 
turnouts, and other improvements in track components. For example, concrete ties are 
more costly than wood ties, but they are frequently used in passenger routes and on 
curves in high tonnage freight routes because they are more durable, hold gauge better, 
and provide stiffer support. 
 
Route and track characteristics also determine the size of equipment that can be carried. 
Clearances limit the width, height, and shape of equipment. Sharp curves limit the 
length of vehicles, as very long vehicles may derail. Bridge characteristics limit the 
maximum loading density, in other words the gross weight of a car divided by the 
length of a car. Clearances, maximum axle loads, and maximum loading density are 
therefore key design parameters for rail equipment. 
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2.2. Locomotives 

Locomotives provide or apply the power required to move the trains. The basic 
engineering concerns are maximum power, tractive effort, adhesion, and sustainable 
operation on grades at low speeds. Energy is needed to overcome rolling, curve, and 
wind resistance; to climb grades; and to operate lighting, air conditioning, and other 
external loads. For high-speed operations, maximum power requirements are critical, as 
it is the power that allows operation at high speeds up the ruling grades. Power is 
generally not critical for freight trains, which simply slow down when going up grades. 
For heavy freight, the main concern is that the tractive effort is sufficient to start a heavy 
train up a grade. Tractive effort is the product of the mass of the locomotive and the 
coefficient of friction at the wheel/rail interface (adhesion). Tractive effort therefore 
represents the force that can be applied to overcome initial rolling resistance and 
gravity. Heavy, six-axle locomotives with high adhesion are preferred for heavy freight 
trains. 
 
The typical freight locomotive has a diesel engine that produces electricity to drive 
traction motors that are mounted on and actually turn the axles. The ability of the 
traction motors to sustain maximum loads without overheating provides a lower limit on 
the speed of operation up grades, which thereby provides an equivalent limit for the 
minimum power requirements for the locomotive. Diesel-electric units can be coupled 
together and operated by a single crew, and heavy trains may be pulled by three, four, or 
more units. 
 
Steam locomotives have largely been replaced, because of major disadvantages relative 
to diesel-electric locomotives. First, they required a separate crew for each unit. Second, 
they operated with a driving action that imparted extreme forces to the track structure, 
resulting in faster track deterioration and a need for stronger bridges. Third, they 
belched vast quantities of smoke and soot compared to diesel-electric locomotives. 
Steam locomotives are highly romantic in dreams, but an environmental nightmare in 
reality. 
 
Electrified railways are common, especially for passenger systems. In an electrified 
railway, the power is produced off-line and delivered to the locomotive through the 
overhead catenary. With this system, the maximum power is no longer limited to what 
the locomotive itself can produce, so that peak power can be provided to operate up 
grades at high speed. Because of the high cost of the catenary, electrified operations are 
generally found to be too expensive for freight operations. 

2.3. Freight Equipment and Commodities 

A freight car (wagon) is a platform or box designed to carry certain commodities and 
equipped with couplers to allow assembly into a train. The classic boxcar is just that: a 
box with one or two doors mounted over two trucks (bogeys). A covered hopper car, 
which is loaded through hatches at the top and unloaded through hoppers at the bottom, 
is commonly used for grain, fertilizer, plastic pellets, or other bulk commodities that 
need to be protected during the trip. An open hopper, commonly used for coal, has no 
top, so it can be loaded more easily. Gondola cars are open, without hoppers, and must 
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be unloaded from the top. For coal, gondola cars are equipped with rotary couplers so 
that the whole car can be grasped, twisted, and unloaded by a rotary dumper at a port or 
power plant. 
 
For these cars, key design issues relate to tare weight, dimensions, payload, and loading 
density. Since cost per unit capacity declines as cars get larger, there is an incentive to 
make larger cars with lighter tare weights, subject to the size and weight limits defined 
by the operating environment. In North America, the standard coal car in the 1960s had 
a carrying capacity of 70 tons and a tare weight of 30 tons; the standard in the 1980s 
was a similar, but larger steel car with a carrying capacity of 100 tons and a tare weight 
of 31.5 tons; in 2000, the standard is an aluminum car with a carrying capacity of nearly 
120 tons and a tare weight of 22 tons. Thus the ratio of net load to tare weight has 
increased from 2.5 to more than 5 over a 30-year period for heavy haul operations. 
 
Other cars are designed for efficient loading and unloading for special commodities. 
Flatcars can be used to transport loads that are too big or too heavy to fit easily into one 
of the other kinds of cars. Heavy duty flats with three-axle trucks can carry very heavy 
loads. Auto racks can be attached to a basic flat car to create a multilevel car that 
provides one or two additional levels for carrying automobiles. After a number of 
multilevels are placed at an assembly plant for loading, a ramp is moved to the front of 
the first car and raised to the proper height to reach the first, second, or third level of the 
auto rack. Steel panels bridge the gap between the rail cars, so that automobiles can be 
driven from the first rail car through to the following cars, allowing rapid loading and 
loading. Auto racks today are generally closed to prevent damage from weather or 
falling or thrown debris. 
 
A variety of innovative equipment types have been developed to facilitate intermodal 
transportation: the movement of trailers or containers using a combination of rail, 
highway, and waterway operations. At first, standard flat cars were used to carry trailers 
or containers and portable steel panels could be used to bridge the gap between cars so 
that trailers (or containers on chassis) could be loaded by backing them up a ramp and 
along several flatcars. A standard 89-foot (27.1 m) flat car could handle two trailers (40 
or 45 feet long; 12.2 or 13.7 m) or four 20-foot (6.1 m) containers. This process required 
a very heavy flat car to act as a bridge handling the full weight of a trailer. 
 
If trailers or containers are loaded and unloaded using cranes, then lighter designs are 
feasible. The flat car can become a “spine car” that only has a small landing area for the 
wheels of a trailer or the corners of a container. To save more weight, multiple cars can 
be permanently coupled, creating an articulated set of platforms with just one truck 
under each articulated joint. Containers handled with cranes do not have to be on a 
chassis, so the vertical clearance required is less than what is needed for a trailer. In fact, 
if clearances permit, it is possible to stack containers two high on flat cars. The double 
stack car has a well for the first container (or two 20-foot, 6.1-m, containers). The 
second container is held in place, in one design, by bulkheads at the end of the flat cars. 
In another design, the second container is attached using interbox connectors at the 
corner posts (the corners of intermodal containers have steel columns to make them 
strong enough to be stacked in terminals or on container ships; the interbox connectors 
lock into the hollow columns and hold the containers in place). 
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The need for expensive lift equipment to load and unload trains tends to limit 
intermodal operations to high-density corridors. Other types of equipment allow 
efficient intermodal operations with cheaper terminal operations. One approach is a 
modern version of the original flatcar that, in North America, is called the “Iron 
Highway.” This equipment is a long, articulated platform designed to handle a dozen or 
more trucks or containers; the ends of each unit drop down to serve as ramps, allowing 
truck drivers to load the train in the old-fashioned way. Since the platform is 
continuous, it is possible to handle any length container or trailer or truck-trailer 
combination. This type of equipment is used in Europe to shuttle trucks through tunnels 
in the Alps rather than allowing them to drive over the congested, environmentally 
sensitive passes. In North America, this equipment has been tested but is not in 
widespread use. 
 
Another low-cost approach is the “roadrailer.” The original concept was to add a rail 
axle to a highway trailer, so that the same trailer could move as part of a train or on the 
highway. To operate on the railway, the highway axles would be raised and the rail axle 
would be lowered (using a hydraulic or pneumatic system); trailers could be coupled to 
one another with a slackless coupling system that provided a very smooth ride. There 
were two problems with this system: the trailer was expensive and the weight of the 
axle limited the loads that could be carried on highways. The solution was to create a 
special rail car that consisted merely of a truck (bogey) with a small shelf designed to 
support the roadrailer trailer and facilitate connections for the train’s electrical and 
braking systems. A train could be assembled by first using a small forklift to position 
the bogeys along a track at appropriate intervals; drivers could then position each 
roadrailer for coupling and raise the wheels. This system provides the low cost of a 
double stack system by reducing the cost of the rail equipment, improving fuel 
efficiency, and eliminating the need for complex terminals. This system is used in North 
America on routes that do not justify double stack; it is operated as a separate 
intermodal system, imitating a service-conscious trucking operation. 
 

- 
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