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Summary 
 
The theory of irreversible phenomena is first discussed from the viewpoint of kinetic 
theory, via the Boltzmann equation, with a particular attention to the computation of 
transport coefficients for both simple gases and mixtures. Then the macroscopic theory 
of Onsager of irreversible thermodynamic phenomena is discussed.  
 
1. Introduction 
 
The Second Law of thermodynamics (see Thermodynamic Systems and State Functions) 
indicates that not all the processes compatible with the First Law can actually occur. 
Whereas one can easily perform work to heat up the system, it is not always enough to 
supply heat to increase the mechanical energy. At least two heat sources at different 
temperatures are needed as shown by Carnot’s argument (sometimes one of the sources 
may be naturally supplied by the environment). Essentially the Second Law states that 
heat can never pass from a colder to a warmer body without some other related change 
occurring at the same time. The modern statement of this Principle of Dissipation is 
based upon the notion of entropy, introduced by Clausius in 1865. Clausius showed that 
for every thermodynamic system there exists a function of the state of the system, its 
entropy, denoted by S . The latter is defined by a differential relationship for the increase 
dS  of the entropy of the system in an infinitesimally short time interval, during which a 
time reversible process occurs: 
 

*d QdS
T

=  (1) 
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Where *d Q is the heat supplied to the system and T is the absolute temperature. (The 

notation *d Q emphasizes that Q  is not a state function and hence, in mathematical 

language, *d Q is not an exact differential). For processes that are irreversible, one can 
only state that the increase of entropy in a process leading from an equilibrium state to 
another is larger than the increase that would occur a reversible process between the 
same two states: 
 

*d QdS
T

≥                                               (2) 

 
In order to transform this simple statement into a useful tool, it is necessary to build 
some structure for the evolution of the thermodynamic state of a system. 
 
2. The Boltzmann Equation 
 
The next step was provided by Boltzmann, who studied perfect gases with the tools of 
kinetic theory (see Statistical Approach to Thermodynamics). To explain the mechanical 
origin of irreversibility, Boltzmann considered what happens to the probability 
distribution of velocities of gas molecules when collisions occur. This led him to 
formulate a kinetic equation, subsequently called the Boltzmann equation, in which two-
body collisions (like those between two billiard balls) play a leading role. Certain 
collisions (called direct collisions) cause decrease in the number of molecules with a 
certain velocity, while other collisions (called restoring collisions) increase that number. 
The occurrence of both direct and restoring collisions corresponds to the inherent 
reversibility of molecular events. Not only Boltzmann showed that the equation bearing 
his name admits Maxwell’s distribution as an equilibrium solution, but he also gave a 
heuristic proof that it is the only possible one. To this end he introduced a quantity, 
which he denoted by E and was later (as here) denoted by H, defined in terms of the 
molecular velocity distribution. He then demonstrated that as a consequence of his 
equation, this function must always decrease in an isolated system or, at most, remain 
constant, the latter case occurring only if a state of statistical equilibrium prevails. Thus 
the Boltzmann equation is not time reversible. Boltzmann’s result is usually quoted as 
the “H-theorem” and indicates that H must be proportional to (negative) entropy. H has 
an interesting interpretation as a measure of order in the molecular distribution; as a 
consequence S is a measure of randomness or chaos.  
 
Despite its successes, the Boltzmann equation involves conceptual difficulties. Because 
it is time-irreversible, it violates the recurrence theorem of mechanics. This theorem 
states that the molecules composing a system of finite energy and size will return at 
some future time to very nearly their initial condition. Boltzmann proposed the correct 
way out of this paradox: his equation should be interpreted as describing what happens 
to most, not all, of the initial data. To illustrate this, two former students of Boltzmann, 
Paul and Tatyana Ehrenfest, introduced a picturesque model, colloquially referred to as 
the dog-flea model. Think of two dogs lying next to one another, with a total of N fleas 
shared between them, If the fleas jump only from one dog to the next, then after a time 
the number on each dog will have changed while the total number of fleas will be the 
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same. If the dogs are identical, after a long period of time we expect that each dog will 
have on the average N / 2 fleas. This will be true even if all the fleas originally resided 
on only one dog. However, if one waits a much longer time, all the fleas will be back on 
the original dog. Something similar holds for the molecular dynamics; the recurrence 
time is, however, so long (extremely longer that the estimated age of the universe) that 
we never witness phenomena of this kind, which would violate the Second Law. The 
advantage of the Boltzmann equation is that its rigorous derivation can only be obtained 
by a limiting procedure, according to which these paradoxical events disappear because 
that occur at a time t  such that t →∞ , when the Boltzmann equation holds. 
 
Moreover, it is possible to derive the laws of fluid flow, including the linear 
phenomenological equations, from the Boltzmann equation and to obtain explicit 
expressions for the heat conductivity and the viscosity of gases that agree with 
experimental measurements.  
 
H was essentially defined by Boltzmann as the integral of f log f with respect to the 
molecular velocity, where log denotes the natural logarithm and f is the one-particle 
distribution function. The latter, in the case of a monatomic gas, is a function of time t, 
position x and molecular velocity v and gives the expected number density of molecules 
in the six-dimensional phase space described by position x and velocity v. f satisfies the 
Boltzmann equation that can be written in the following form: 
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where V = v* -v is the relative velocity and dσ the differential cross section. The 
velocities before a collision, ′v and *′v  are related to those after the same collision, 
v and *v  by 

*

* *

' ( | | ),
2

' ( | | ),
2

= + +

= + −

1v v v V n

1v v v V n
                                         (4) 

 
Where n is a unit vector, directed as the relative velocity after the collision. We denote 
three- and two-dimensional integrals by just one symbol  ∫, the dimensionality being 
clear from d v*,  and d n. 
 
For polyatomic gases f depends on further variables describing the internal degrees of 
freedom of the molecule and the Boltzmann equation becomes more complicated. 
 
By a detailed consideration of the properties of his equation, Boltzmann showed that the 
time derivative of H is never positive and vanishes if and only if the velocity 
distribution is a Maxwellian, provided the system cannot exchange heat with the 
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surroundings. The proof of this result requires that the space derivatives give zero 
contribution (such is the case for a gas in a spatially homogeneous state or inside a box 
with specularly reflecting walls). It is clear that H corresponds to the entropy except for 
a negative constant factor. The extension of this result to non-isolated systems was only 
provided in the second half of the 20th century and permits to deal with heat sources. 
 
The molecular description is complicated since it must cover situations varying from 
ordinary temperature and pressures to nearly vacuum conditions. The case when the 
conditions occur was studied already by Maxwell and Boltzmann and was systematized 
by Chapman and Enskog in this century. The final result is better stated if one refers to 
the entropy per unit volume s. 
 

( ) ( )r is
t

σ σ σ∂
= = +

∂
                                                 (5) 

 
where σ  is the entropy source per unit volume, decomposed into a reversible part 
 

( ) .r s
T

σ ⎛ ⎞= −∇ +⎜ ⎟
⎝ ⎠

qu                                                   (6) 

and an irreversible one ( )iσ . Here q  is the heat flow vector and u  the (bulk) velocity 

vector; ( )iσ in turn must be decomposed into two parts, the entropy transfer associated 
with the irreversible processes and a volume source that is non-negative. This 
decomposition will be discussed below.  
 
According to the Chapman-Enskog solution of the Boltzmann equation for a simple gas 
(as opposed to a mixture) and in agreement with continuum mechanics, σ can be 
expressed as a sum of two terms, which can be written as a linear combination of 

ij ij ijq η∑ and ;i i iq g∑ here , , ,ij ij iq qη and ig denote the components of the stress deviator, 
the rate of strain tensor, the heat flow vector, and the temperature gradient respectively. 
The same theory shows that in each of the above pairs of tensors and vectors, the first 
element depends linearly on the second with coefficients which may only depend on 
temperature and number density. This result must be postulated in continuum mechanics. 
The extensions of the theory to mixtures (see next section for details) shows that the 
pattern repeats itself: there are more gradients (the concentration densities also occur) 
and more quantities (such as the diffusion velocity) may depend on these quantities, but 
the entropy source is always a linear combination of terms which are products of two 
factors, a gradient and another factor describing a phenomenon typically associated with 
that gradient. New phenomena, such as thermal diffusion, were discovered by this 
kinetic theory approach that has, however, the serious limitation of being essentially 
restricted to rarefied gases. During World War II, thermal diffusion, an example of a so 
called cross-coupling in which a temperature gradient causes a diffusion flux, was used 
to separate fissionable isotopes of uranium.  
 
Electric Phenomena can also be studied by means of a Boltzmann equation describing 
the statistical behavior of electrons. Results qualitatively similar to those found for a gas 
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can be proved in this case as well. In the nest two sections we develop the Chapman-
Enskog theory for the general case of a mixture. 
 

- 

- 
- 
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