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Summary 
 
This brief review contains a number of the most typical conceptual and mathematical 
models that describe the flow of a single fluid phase and the transport of a single 
chemical species (≡ a contaminant) in saturated two- and three-dimensional porous 
medium domains. The emphasis is on flow and contaminant transport in ground water 
domains. All models are based on the continuum approach and are written at the 
macroscopic level. The material covered in this review can be found in numerous texts. 
Bear et al (1968), Bear (1979) and Bear and Verruijt (1987, or later editions) may serve 
as examples. Hence, no effort has been made to support the presentation by an extensive 
list of references. 
 
1. Introduction 
 
1.1. Model Definition 
 
A model may be defined as a selected simplified version of a real system, and 
phenomena that take place within it that approximately simulates the system’s 
excitation-response relationships that are of interest. For example, a ground water 
system may be ‘excited’ by pumping, by artificial recharge, or by changing boundary 
condition. Its ‘response’ takes the form of spatial and temporal changes in water levels 
and in contaminant concentrations. 
 
With the above definition, all that a model can do is to predict the future behavior of an 
investigated system. Nevertheless, modeling activities may be conducted to achieve any 
of the following objectives: 
 

 To predict the behavior of a considered system, in response to excitations that 
stem from the implementation of management decisions. 

 To obtain a better understanding of a considered system from the geological, 
hydrological, and chemical points of view. 

 To provide information required in order to comply with regulations. 
 To provide information for the design of a monitoring network, by predicting the 

system’s future behavior. 
 To provide information for the design of field experiments. 

 
Although a model is eventually expressed in mathematical terms, the mathematical 
notation is used merely as a compact way of describing the physical and chemical 
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phenomena that are relevant to the considered problem. However, the mathematical 
formulation is needed if we wish predict the system’s future behavior. 
 
The first step in any modeling process is the establishment of the conceptual model of 
the considered problem and problem domain. 
 
1.2. Conceptual Model 
 
The conceptual model of a problem and a problem domain consists of a set of 
assumptions that reduce the real problem and the real domain to simplified versions that 
are satisfactory in view of the modeling objectives, the information that the model is 
expected to provide, and the associated management problem. Determining the 
conceptual model is the first, perhaps the most important, step in the modeling process. 
Once a conceptual model has been selected, it is translated into a mathematical one.  
 
The following is a list of typical aspects that require assumptions: 
 

 Geometry of the surface that bounds the domain of interest. 
 The dimensionality of the model (one, two, or three dimensions). 
 Steady-state or time dependent behavior. 
 The kind of soil and rock materials comprising the domain, and the 

inhomogeneity, anisotropy, and deformability of these materials. 
 The number and kinds of fluid phases and the relevant chemical species 

involved. 
 The extensive quantities transported within the domain. 
 The relevant material properties of the fluid phases (density, viscosity, 

compressibility, Newtonian or non-Newtonian behavior). 
 The relevant transport mechanisms within the domain. 
 The possibility of phase change and exchange of chemical species between 

adjacent phases. 
 The relevant chemical, physical, and biological processes that take place in the 

domain. 
 The fluid flow regime involved (e.g., laminar or non-laminar). 
 The existence of isothermal or non-isothermal conditions (and their effect on 

fluid phase properties and on chemical–biological processes). 
 The presence of assumed sharp macroscopic fluid-fluid boundaries, such as a 

phreatic surface. 
 The relevant state variables, and the areas or volumes over which averages of 

such variables are taken. 
 The presence of sources and sinks of fluids and chemical species within the 

domain, and their nature. 
 The conditions on the domain’s boundaries. 
 The initial conditions within the domain. 

 
In this chapter, unless otherwise specified, we shall assume that the flow regime is 
laminar, and that the considered fluid phase – water – is Newtonian. We shall also 
assume that the considered porous medium domain is such that it can be described at the 
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macroscopic or continuum level. At this level all variables are averages of their 
respective microscopic values over a Representative Elementary Volume (REV). 
 
Intrinsic phase average. The intrinsic phase average of eα , taken over the domain of 
the REV of volume oU , centered at the point x, is defined as 
 

o ( ,t)
o

1e ( , t) e ( , t; )d ( ),
( , t) α

α
α α α

α
′ ′= ∫ x

x x x x
x U

U
U

 (1.1) 

 
where oαU  is the volume of the α-phase within oU , and ′x  is a point in the REV 
centered at x. The intrinsic phase average is, thus, an average of Eα  per unit volume of 
the considered phase. 
 
1.3. Mathematical Model 
 
The conceptual model is “translated” into a mathematical model, the solution of which, 
subject to specified initial and boundary conditions, provides the information required 
for making management decisions. 
 
Each mathematical model consists of: 
 

 A definition of the geometry of the surface that bounds the considered domain. 
 Partial differential equations that express the balances of the considered 

extensive quantities (e.g., mass of fluids, mass of chemical species, energy) .( 

Momentum, as an extensive quantity, is not mentioned, as in the models 
considered here, the momentum balance is introduced in its degenerated form of 
Darcy’s law) 

 Flux equations that relate the fluxes of the considered extensive quantities to the 
relevant state variables of the problem. 

 Constitutive equations, that define the behavior of the particular phases and the 
chemical species involved (e.g., dependence of density and viscosity on 
pressure, temperature, and solute concentration). 

 Sources and sinks of the relevant extensive quantities. 
 Initial conditions that describe the known state of the considered system at some 

initial time. 
 Boundary conditions that describe the interaction of the considered domain with 

its environment (i.e., outside the delineated domain) across their common 
boundaries. 

 
1.4. General Macroscopic Balance Equation 
 
The core of any mathematical model that describes the transport of an extensive quantity 
is a partial differential equation (p.d.e.) that expresses the balance of that quantity, per 
unit volume of porous medium. This approach, of taking a balance of an extensive 
quantity over a small volume centered at a point, and then letting this volume be 
gradually reduced to zero, is referred to as the Lagrangian approach. 
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The general microscopic balance equation for any extensive property of a fluid phase, E, 
having a density e, can be expressed in the form 
 

E Ee (e ) ,
t

ρ∂
= −∇⋅ + + Γ

∂
V j  (1.2) 

 
where Ej  is the diffusive flux of E, relative to the fluid phase mass weighted velocity, V, 

ρ denotes the phase mass density, and EΓ  denotes the source of E, expressed as E per 
unit mass of the phase per unit time. The diffusive flux of E is related to the velocity of 
E by: E Ee( )= −j V V . 
 
By averaging the above equation over the considered α-phase within the REV, we 
obtain the general macroscopic balance equation for E in the form (Bear and Bachmat, 
1990) 
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where θ and 
α

V  denote the volumetric fraction and the (mass averaged) velocity, 
respectively, of the considered phase, n denotes the outward unit vector normal to the 
(microscopic) surface αβS , between the α-phase and all other (β-)phases within an 
REV, and we have made use of the decomposition of the (intrinsic phase) averaged 

advective flux of E within the α-phase, e
α

V , into two fluxes: a macroscopic advective 

flux e
αα V , and another macroscopic flux, e

α

V . In this equation: 
 

 The flux, e

α

V , which is the flux of E in excess of the average advection of E 
carried by the phase, is the dispersive flux of E. 

 The term 
 

E E

o
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S �
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expresses the flux of E from the α to all β-phases, across the αβS -surface, which 

separates the α-phase from all other β-phases within oU , by advection relative to the 
possibly moving αβS -surface, that moves at a velocity u, and by diffusion. 
 
More about the diffusive and dispersive fluxes is presented in Section 4. 
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1.5. Boundary Surface 
 
The considered porous medium domain is delineated by boundary surfaces. Let 
F( , t) 0=x  represent the equation of a possibly moving (macroscopic) boundary surface. 
The speed of displacement of this boundary, u, should not be mixed up with the 
velocities of the fluids present on both sides of the surface. As the surface moves, its 
shape may change, but its equation, F( , t) 0=x , remains unchanged. The quantity F is, 
thus, a conservative property of the points on the surface, for which the total derivative 
vanishes, i.e. 
 
DF F F 0.
Dt t

∂
≡ + ⋅∇ =
∂

u  (1.4) 

 
By definition, 
 

F ,
F

∇
=
∇

n
| |

 (1.5) 

 
where n denotes the unit vector normal to the surface F = 0. 
 
From (1.4), we obtain 
 

FF .
t

∂
⋅∇ = −

∂
u  (1.6) 

 
The component of u normal to the surface is then given by 
 

n
n

F t F tu ,
F F s

∂ ∂ ∂ ∂
≡ ⋅ = − = −

∇ ∂ ∂
u n

| |
 (1.7) 

 
where ns  is a distance measured along n. 
 
 
1.6. Phases and Components 
 
A chemical species is defined as an identifiable homogeneous chemical compound 
(element, ion or molecule) that participates as an entity (whether as a reactant or as a 
product) in a chemical reaction that takes place within a phase.  
 
The term refers to the actual form which a molecule or an ion is present in a solution, or 
a phase. For example, iodine in an aqueous solution may exist in the form of one or 
more of the species: 2 3I , I , HIO, IO ,  IO− − − . The same compound in solution and as an 
adsorbate on a solid are considered as two different species. Similarly, the same 
compound present in different phases are considered different species. 
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A phase may be defined as a portion of space occupied by a material such that a single 
set of constitutive relations describes the behavior everywhere within that material. This 
definition enables us to refer to disjoint portions of space occupied by the same liquid as 
a single phase. 
 
Another way, not rigorous, but more descriptive, is to define a phase as a homogeneous 
portion of space that is separated from other such portions by a well defined observable 
sharp physical boundary (interphase boundary, or interface).  
 
There can be only one gaseous phase in the void space of a porous medium domain, as 
all gaseous phases are completely miscible, and a distinct boundary cannot be 
maintained between them. Two miscible liquids also constitute a single phase. We may, 
however, have more than one liquid phase occupying the void space. The term 
immiscible is sometimes used to describe distinct liquid phases. 
 
Often, a chemical species, initially present in one fluid phase, will cross an interfacial 
boundary and diffuse into an adjacent fluid phase. Nevertheless, as long as a sharp 
interface is maintained between the two fluids, we regard them as separate phases, albeit 
not as completely immiscible ones. 
 
A phase may be composed of a large number of chemical species. However, under 
conditions of chemical equilibrium, the number of independent chemical species 
necessary to completely describe the composition of a given phase may be much 
smaller. We use the term component to denote a chemical species that belongs to the 
smallest set of such species that is required in order to completely define the chemical 
composition of the phase under equilibrium conditions. When chemical equilibrium is 
not assumed, all species are defined to be components. 
 
For the sake of simplicity, we shall often use the term ‘component’ also to denote a 
mixture of a number of independent chemical species in a liquid or a gas. The selection 
of components is not unique, in the sense that different chemical species, or assembly of 
species, may be selected as components of a given phase. 
 
2. Modeling Flow in a Three-Dimensional Domain 
 
The model will be written at the macroscopic level. All variables are averages of their 
respective values at the microscopic level. However, we shall not use any symbol to 
indicate this fact. 
 
- 
- 
- 
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