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Summary 
 
In an exergy analysis several exergetic variables (such as exergy destruction rate and 
exergetic efficiency) are calculated for each system component. A critical review of 
these variables identifies the strength and limitations of an exergy analysis. An 
appropriately defined exergetic efficiency is the only variable that unambiguously 
characterizes the performance of a component from the thermodynamic viewpoint. 
Exergy-based principles can also be used in optimization procedures and may assist in 
developing new concepts. Exergy analysis is without doubt a very powerful tool, 
particularly when it is combined with exergoeconomic considerations.  
 
1. Introduction 
 
Exergy analysis is a universal method for evaluating the rational use of energy. It can be 
applied to any kind of energy conversion system or chemical process. The discussion in 
this article is limited to such processes. An exergy analysis identifies the location, the 
magnitude and the causes of thermodynamic inefficiencies and enhances understanding 
of the energy conversion processes in complex systems. Such thermodynamic 
considerations can be combined with principles of engineering economics to determine 
the potential for cost-effective improvements of new or existing systems. Exergy 
principles can also be used to develop new processes that use energy resources more 
effectively and reduce environmental impact. The analysis of the real thermodynamic 
inefficiencies in a system and the system components is valuable for improving an 
energy-intensive operation.   
 
This chapter deals with the use of exergetic variables, i.e., those variables calculated in 
an exergy analysis to evaluate each system component (see Exergy Balance and 
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Exergetic Efficiency). Their critical review identifies the strengths and limitations of an 
exergy analysis. The following discussion is limited to systems at steady-state 
operation. The results can easily be extended to other systems. Particular attention is 
given to the structure of a system and the mutual interdependencies among its 
components. The following discussion focuses on the use of exergetic variables for the 
evaluation, optimization and development of energy systems.  
 
2. Evaluation 
 
2.1. Exergetic variables 
 
The following three questions need to be answered when reviewing the exergetic 
variables used to evaluate the thermodynamic performance of system components:  
 

 Which variable best characterizes the performance of a component from the 
thermodynamic viewpoint?  

 Which variable should be used to compare the performance of similar 
components in the same system or in different systems?  

 Which variable should be used to compare the performance of dissimilar 
components?  

 
For practical applications of the exergy concept to the improvement of energy 
conversion systems, the answers to the following questions are of particular importance:  
 

 How should we interpret the value of an exergetic variable?  
 How should we use systematically the information provided by a detailed exergy 

analysis for improving the design or operation of the overall system? 
 

 
 

Figure 1. System in which the product of one component is the fuel of the next 
component. 
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To facilitate the following discussion, let us consider the system shown in Figure 1, 
which consists of the components A and B. The fuel of component A ( F,AE ) is equal to 
the fuel of the total system ( F,totE ). The product of component A ( P,AE ) is the fuel of 
component B ( F,BE ), whereas the product of B ( P,BE ) is also the product of the overall 
system ( P,totE ) and is kept constant. To further simplify the presentation, we also 
assume that there are no exergy losses in the system:  
 

L,A L,B L,tot 0E E E= = =   (1) 

 
Thus, all thermodynamic inefficiencies are caused by the exergy destruction within the 
components A and B. Then, by applying the exergy balance and the definitions of the 
exergy destruction ratio D ky ,  ( D F,tot/kE E,= ) as well as the exergetic efficiency kε  to 
components A and B (see Exergy Balance and Exergetic Efficiency) we obtain the 
following relations  
 

P,tot
D,A

B A

1 1E
E ε ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (2) 

 

D,B P,tot
B

1 1E E ε
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (3) 

 
D,A A1y ε= −   (4) 

 
D,B A B(1 )y ε ε= −   (5) 

 
Eq. (2) demonstrates that the rate of exergy destruction in component A depends not 
only on the efficiency of the same component ( Aε ), but also on the exergetic efficiency 
of component B ( Bε ). Thus, the rates of exergy destruction should be used very 
cautiously to characterize the performance of system components because, in general, a 
part of the exergy destruction occurring in a component is caused by the inefficiencies 
of the remaining system components. This part is called exogenous exergy destruction. 
The total exergy destruction within a component is the sum of the exogenous exergy 
destruction and the endogenous exergy destruction, i.e. the exergy destruction due 
exclusively to the component being considered assuming that all remaining components 
operate with exergetic efficiencies of 100 %. In complex thermal systems it is very 
difficult and costly to accurately separate these two parts of the exergy destruction 
within a system component. Only in the component (if there is only one such 
component) where P,totE  is generated is the exogenous exergy destruction zero (see 
Eq. (3) for component B of the system shown in Figure 1).  
 
Similarly Eq. (5) shows that the exergy destruction ratio of component B depends on the 
exergetic efficiencies of both components A and B. Here only that component where 
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F,totE  is supplied to the entire system (if there is only one such component) has a D ky ,  
value which is independent of the performance of the remaining components (see 
Eq. (4) for the component A).   
 
The cautiousness to be associated with the use of D ky ,  is not reduced if the exergy 
destruction in the k th component is related to the product (instead of the fuel) of the 
overall system as the following equations demonstrate for the exergy destruction ratios 
for the components of the system shown in Figure 1  
 

D
D

P,tot

k
k

Ey
E

,
,′ =   (6) 

 

D,A
B A

1 1 1y
ε ε

⎛ ⎞
′ = −⎜ ⎟

⎝ ⎠
  (7) 

 

D,B
B

1 1y
ε

′ = −   (8) 

 
The variable D ky ,′  provides a clear characterization only of the performance of the 
component in which P,totE  is generated (see Eq. (8) for the component B).  
 
To answer the questions formulated in the beginning of this section we can conclude 
that neither the exergy destruction rate nor the exergy destruction ratio can accurately 
characterize the thermodynamic behavior of the component being considered since they 
both depend, in general, on the performance of other system components. The only 
variable that unambiguously characterizes the performance of a component from the 
thermodynamic viewpoint is an appropriately defined exergetic efficiency that depends 
only on the performance of the component being considered. Details about the 
appropriate definition of exergetic efficiencies can be found in Exergy Balance and 
Exergetic Efficiency . The exergetic efficiency should also be used to compare the 
performance of similar components operating under similar conditions in the same 
system or in different systems. For the comparison of dissimilar components the only 
variable that may be used (with the previously mentioned caveat in mind) is the exergy 
destruction ratio D ky ,  (or D ky ,′  if F,totE  remains constant).   
 
By using a modified exergetic efficiency kε

∗  defined as  
 

AV
P D L

UN UN
F D F D

1k k k
k

k k k k

E E E
E E E E

ε , , ,∗

, , , ,

+
= = −

− −
  (9) 

 
a more realistic assessment of the potential for improving the k -th component from the 
thermodynamic viewpoint can be made. In Eq. (9) the terms AV

D kE ,  and UN
D kE ,  denote the 
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avoidable and unavoidable exergy destruction rate for the k-th component 
( AV UN

D D Dk k kE E E, , ,= + ). The modified exergetic efficiency defined in Eq. (9) enables also 
the comparison of dissimilar components with respect to their potential of improvement.  
 
A major contribution of an exergy analysis to the evaluation of a system is provided 
through a thermoeconomic (exergoeconomic) evaluation that considers not only the 
inefficiencies but also the costs associated with these inefficiencies and compares the 
latter with the investment expenditures required to reduce the inefficiencies.  
 
- 
- 
- 
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