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Summary 

The article presents three Decision Support Systems (DSS) applied to complex 
problems of natural environment management of different scale, namely regional water 
quality management, land use planning, and European air quality management. These 
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problems are not only of different scale but the way the described DSSs are used are 
also very different. 
 
Nevertheless, these three applications have a number a common characteristics as 
regards the applied methodological background of multi-objective decision support and 
its application to environmental decision-making problems described in article Multi-
objective Decision Support Including Sensitivity Analysis. This chapter provides 
insights into these problems which might be interesting to specialists working in the 
respective fields. It also illustrates various problems related to the development and use 
of DSSs, which are interesting for both users and developers of DSSs. 

1. Introduction 

There is a vast diversity of natural environment problems that need to be analyzed for 
providing sensible help in better understanding these problems and in identification 
and/or examination of various actions that can result in desired effects. These problems 
have different characteristics in several dimensions: 
 

• The type of the problem (its nature, scale, required accuracy, time horizon) 
• The nature of the decision process 
• The needs for the decision support 

Every DSS, even for the same type of problem, needs to be different, in order to 
correspond well to the needs of the corresponding decision making process. For 
example, DSSs for a very specific problem of controlling a system of water reservoirs 
are using very different models, each of them being relevant to a particular water system 
and the requirement analysis for the corresponding DSS. 
 
Given such a diversity of problems and the corresponding DSSs, it is not possible to 
even summarize a representative sample of decision support systems for environmental 
problems in an article. Moreover, short summaries of DSSs would neither be useful for 
users nor for developers of DSSs. Therefore, this article instead of an oversimplified 
summary of DSSs presents three DSSs that have been developed for complex 
environmental problems of different scale. Enough detail of each DSS is provided to 
illustrate several key issues that are relevant to decision support of any complex 
problem. 
 
The truth is that there are no simple ways of rationally solving any complex problem 
(article 4.20.4.1 provides arguments for this statement). Unfortunately, there are many 
books and software tools that advertise simple approaches applicable to almost any 
decision problem. The role of this article is to illustrate the complexity of the 
development and use of DSSs, which is needed for understanding the possibilities and 
limitations of model-based decision support by both users and developers of DSSs. 
 
A real understanding of these issues requires a more detailed presentation of each 
problem and the corresponding DSS, and a discussion of several key issues that are of a 
more general interest for users and developers of DSSs, and are relevant to various (also 
very different) decision problems. 
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The three problems and corresponding DSS presented in this article are: 
 

• RWQM, Regional Water Quality Management, applied to the Nitra River basin 
in Slovakia 

• AEZWIN, Land Use Planning DSS, being applied in several countries in Africa 
and Asia 

• RAINS, system of models used for analysis of cost-effective policies aimed at 
improving European air quality that is used for supporting intergovernmental 
negotiations in Europe 

 
RWQM uses a rather small and simple MIP type model, but it shows how the classical 
water quality modeling approaches had to be modified in order to provide the needed 
support for regional water quality management. AEZWIN uses large-scale LP type 
models that are composed by users based on a sophisticated system of programs 
developed for various elements of land use planning. An interesting common feature of 
RWQM and AEZWIN is that both of them have the same DSS structure, and use 
common modular software tools. 
 
The third DSS, RAINS, uses a complex NLP model, and its implementation and use 
demonstrate several methodological and technical issues that are relevant to any DSS 
aimed at rationally supporting decision analysis and support for complex environmental 
problems. 

2. Regional Water Quality Management 

2.1. The Problem 

The scope of the problem considered here is a river basin, or a region composed of 
several basins, in which untreated or inadequately treated municipal and industrial 
wastewater emissions should be reduced in order to improve ambient water quality. At 
each discharge point, one technology out of a set of possible technologies can be 
implemented in order to meet the desired water quality goals in the region. In this 
selection of technologies, or strategy development, decision makers must evaluate the 
trade-offs among a large number of alternatives based on, among other things, effluent 
and/or ambient water quality standards and goals; capital investment and annual 
operating costs; and the principles of equity, uniformity, and efficiency. 
 
The traditional approach, as used in developed countries, is based on the selection of 
generally uniform effluent standards which, in turn, are often based on given 
technologies. This is the well-known policy of ``best available technology''. Under such 
an approach, both ambient water quality standards and budget requirements are 
considered only indirectly. The following two conditions must be met: 
 

• If effluent standards are defined stringently enough, then ambient water quality 
will be ``good enough". 

• Enough money (or willingness to pay) is available to achieve ``safe" 
environmental conditions (without raising the issues of how safe they are and 
how much should be paid for them).  
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Unfortunately, such a robust and uniform policy may not be an affordable option for 
countries and or regions with tight financial resources, for which there is a competition 
of various social needs (like health-care, restructuring of economy, securing pension-
system). In such cases various trade-offs between investment and operating costs on one 
side and the resulting water quality have to be examined. 

2.2. Model Formulation 

The model outlined here has been developed for the Nitra River Basin in Slovakia. The 
river water quality model applied to this case study is quite simple but it was adequate 
for this application. It is based on the concept of linear transfer coefficients, which are 
derived from first-order rate equations and the (linear) extended Streeter-Phelps model 
incorporating dissolved oxygen (DO), carbonaceous oxygen demand, and nitrogenous 
oxygen demand. Steady-state hydraulics are considered, based on a ``critical design 
flow". Complete mixing downstream of each emission and tributary confluence and 
uniform flow along the river between these points are assumed. 
 
For the Nitra River basin a set of locations or points is defined, each of which is 
characterized by at least one of the following:  

• An emission point, at which wastewater is discharged; the amount of discharged 
pollutants depends on the treatment technology chosen in the decision process 

• An abstraction point, at which water is withdrawn from the river; at these points 
one can consider a ``negative" emission, whereby the constituent loads are 
reduced proportionally to the reduction in river flow. 

• A monitoring point, at which concentrations of water quality constituents are 
compared to given standards 

• A confluence point, which represents the junction of two rivers; constituent 
loads are the sum of loads from both rivers. 

• A weir point, where DO is added to the river due to the increase in turbulence 
downstream of a weir or small dam. 

• Other points where hydraulic and hydrologic data exist and therefore new travel 
times and transfer coefficients can be calculated; the loads of constituents do not 
change at these points. 

 
Each of these points is called a node, denoted by the subscript j. At every node the 
equations that define water quality (i.e., mass balances of constituents) are given. 
Overall, four water quality constituents (of which three are real state variables) are 
considered. In the equations the subscript l is used to denote the respective constituents: 
 

1. DO (dissolved oxygen) 
2. CBOD (carbonaceous biochemical oxygen demand) 
3. NBOD (nitrogenous biochemical oxygen demand), which is calculated 

directly from NH4, assuming that all of the nitrogen consumes oxygen 
4. NH4 (ammonia). 

 
The decision variables are the treatment technologies to be implemented at the nodes 
where wastewater emissions occur. These are denoted by xjn, where n is the technology 
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choice at emission node j. These technology options include the option of no treatment 
(with raw waste concentrations and no cost), as well as the option of maintaining the 
existing technology (with the operating cost, but no investment cost). Only one 
technology can be implemented at each node, and this logical condition is represented 
by the following constraint: 
 

( )
1jn

n N j
x

∈
=∑  (0,1)jnx ∈  i E∈  (1) 

 
where N(j) is the set of technologies considered for emission node j, and E is the set of 
nodes where emissions occur. 
 
Auxiliary variables (defined for easier handling of the model and interpreting results 
from its analysis) in the model include variables related to water quality and variables 
related to cost. 
 
Focusing on the first set, we consider the water quality constituent concentrations 
resulting from the implementation of the n-th technology at the j-th emission node, emjnl  
(mg/l).  
 
The emission load of the l-th constituent at the j-th node 
is denoted by ejl  (g/s) and is defined by: 
 

( )
jl j jn jnl

n N j
e q x em

∈
= ∑  (1,3)l∈  (2) 

 
where qj (m3/s) is the waste flow rate. Note that due to equation (2), for each j exactly 
one out of N(j) binary variables, xjn, will be equal to one while the others will be equal 
to zero. 
 
Next, the ambient constituent concentrations must be defined. The ambient 
concentration of DO (mg/l), typically the most important water quality indicator, is 
affected by several constituents, as well as by its saturation level. The DO concentration 
(denoted for the j-th node by aqj0) is given by the extended Streeter-Phelps model, 
analytically integrated step by step as follows: 

((
( ) )) )

{ }

0 0
( )

0 0
1,2,4

[1/( )]* *j j j i i j
i I j

i i i il il j
l

aq Q W b Q DOsat

TC DOsat aq TCp aq ioxy

∈

∈

⎛
⎜= + + −
⎜
⎝

− − − +

∑

∑
 (3) 

 
In this, the set I(j) is composed of indices of nodes located immediately upstream of the 
j-th node (this set contains two elements for confluence nodes and one element 
otherwise), aqil (mg/l) are the upstream concentrations of oxygen-demanding 
constituents  (CBOD, NBOD, SOD), and the remaining right-hand side quantities are 
given (or computed from given data): 
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DOsatj (mg/l) is DO saturation level at the j-th node, TCi0 is a dimensionless transfer 
coefficient for the DO deficit (defined as DOsatj - aqi0), TCpil are dimensionless transfer 
coefficients for CBOD, NBOD, and SOD, respectively; Qj (m3/s) is the river flow just 
below node j, Wj (m3/s) is the withdrawal occurring at the j-th node, bi0 (g/s) is the 
background level of DO entering the river upstream of node j, and ioxyj (g/s) is the DO 
emission at node j. Thus, the summation term represents the DO coming from upstream, 
which consists of oxygen transfer from the upstream node(s) as well as ``background" 
oxygen from groundwater infiltration flow (for simplicity, we assume that background 
loads of other constituents do not affect DO until the next reach downstream). This 
upstream mass is then mixed with the DO load from the wastewater emission, ioxyj, 
hence the division by the total flow Qj+Wj. Calculation of the transfer coefficients has 
been done on the basis of the Streeter-Phelps equations (exponential terms expressing 
transformations due to decay and re-aeration over the travel time). 
 
Ambient concentrations of the other constituents such as CBOD and NBOD (denoted by 
aqjl) are defined by: 
 

( ) ( )
( )

/jl il il il i jl j j
i I j

aq b TC aq Q e Q W
∈

⎛ ⎞
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠
∑  { }1,3l∈  (4) 

where, as in equation (3), the first term in this equation represents the background load 
of constituent l which accounts for nonpoint or noncontrollable source pollution, the 
second term represents the load of the constituent l arriving from the upstream 
reach(es), and the third term represents the emission load of constituent l at node j. 
Cross-impact transfer coefficients, TCpil, are not included here since these constituents 
are not affected by the DO level unless anoxic conditions exist. 
 
Based on these ambient constituent concentrations, the following three indices of water 
quality are defined: 
 

( )0min jj M
DO aq

∈
=  (5)  

 

( )1max jj M
BOD aq

∈
=  (6)  

 

( )4 3max jj M
NH aq

∈
=  (7)  

 
where aqjl (defined by (3) or (4)) is the ambient concentration of the l-th constituent at 
node j, and set M contains indices of monitoring nodes. 
 
Finally, several cost variables are defined in the model. Corresponding to the n-th 
treatment technology implemented at the j-th node are an investment cost ICjn and an 
operation and maintenance cost OMCjn. The investment costs Invj for the j-th emission 
point are defined by: 
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( )
j jn jn

n N j
Inv x IC

∈
= ∑    .j E∈                                                              (8)  

 
The operation and maintenance costs OMj are given by: 
 

( )
j jn jn

n N j
OM x OMC

∈
= ∑   .j E∈                                                   (9)  

 
The total annual cost (TAC) of each technology is determined from the 
two previous cost components as:  
 

( ) ( )( )1 / 1 1m m
j j jTAC r r r Inv OM⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

 ,j E∈                           (10)  

 
where r is a given discount rate,  m is a given capital recovery period, and the multiplier 
of the first term is called the uniform series capital recovery factor. One may also want 
to consider the sums of respective costs for the whole region: 

_ ,j
j E

Tot Inv Inv
∈

= ∑                                                                                       (11)  

_ ,j
j E

Tot OM OM
∈

= ∑  (12)  

_ ,j
j E

Tot TAC TAC
∈

= ∑   (13)  

 
The treatment alternatives at various MWWTPs, along with the corresponding effluent 
concentrations and costs, have been designed in separate field studies for each 
MWWTP. Each alternative was developed on the basis of technological calculations 
using physical, biological, and chemical processes, as well as their combination.  These 
lead to well-known methods such as mechanical—biological treatment with or without 
denitrification, mechanical--biological treatment with chemical addition to remove 
phosphorus and/or to increase the capacity of the plant, biological--chemical treatment 
with denitrification, and so forth. The alternatives identified also depend on whether 
upgrading an existing facility or constructing a new plant is considered a viable option.  
- 
- 
- 
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