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Summary 
 
Disturbance plays a roll in ecology so important that it is arguably the cause, condition, 
and solution to conservation measures. Discrete disturbances are described in many 
spatial and temporal terms, but their importance to ecological systems is dependant on 
their timing during succession.  Understanding this dynamic role is the task of 
restorationists who need to know that ecosystems evolve to be resilient to a particular 
set of historical disturbances.  
 
This historical precedence can show restoration managers the typical kinds of 
disturbances that are natural to the patch or multi-patch system in question. The 
application of the appropriate disturbance at a key moment can steer the system towards 
dynamic equilibrium. It is disturbance regimes that act as filter and strain non-resilient 
organisms from those communities. Conservationists must recognize the importance of 
these discrete processes and learn to include them in sound restoration practices.   
 
Here, I first introduce concepts and theory relating disturbance ecology to restoration 
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(Part A), then discuss for practitioners ways of applying ecological knowledge to 
restoration challenges (Part B), and finally present a case study substituting missing 
dynamics on former military training areas in central Europe by conservation action 
(Part C). 
 
1. Part A: Concepts and theory - relating disturbance ecology to restoration  
 
1.1 The general role of disturbance in restoration  
 
Restoration ecologists and managers are increasingly challenged to restore ecological 
processes that lead to self-sustaining ecosystem dynamics. Due to changing 
environmental conditions, however, restoration goals need to include novel regimes 
beyond prior reference conditions. In the restoration process, disturbance ecology offers 
crucial insights into the driving forces of ecosystem dynamics. Moreover, restoration 
efforts can make efficient use of natural or human disturbance regimes in the 
re-establishment of ecosystem dynamics, such as in novel grazing regimes on 
abandoned pasture lands (e.g. Lindborg & Eriksson 2004), increased flooding dynamics 
in riparian ecosystems (Moerke & Lambertio 2004), mechanical ground disturbances in 
temperate dry acidic grasslands on former military training areas (e.g. Jentsch & 
Beyschlag 2003, Jentsch et al. 2007), and prescribed burning in boreal forests (Fule et 
al. 2004).  
 
Modifying ecosystem dynamics for restoration purposes can be done effectively by 
using disturbance as a management tool, for instance, to set back the successional clock 
or alter the filter restrictions for species establishment and community assembly. 
Natural disturbance events can additionally be used as a ‘window of opportunity’ for 
restoration purposes, such as enhancing plant establishment after heavy rainfalls 
associated with El Nino in arid environments (Holmgren et al. 2006). Thus, restoration 
managers have two different options for modifying ecosystem dynamics at restoration 
sites; manipulating continuous processes (succession) or making use of discrete events 
(disturbance).  
 
1.2 Continuous versus discrete processes in ecosystem dynamics 
 
Temporal dynamics in ecosystems are the product of two interacting factors, continuous 
and discrete processes (Hobbs et al. 2006). Continuous processes include gradual 
accumulation of biomass and nutrients as the system moves through progressive 
successional stages. Discrete processes include the occurrence of disturbance, which can 
cause rapid transitions between different ecosystem states or suddenly reset the 
successional clock. In addition, a disturbance can change continuous processes such as 
colonization or extinction of indigenous species and sudden events such as rapid 
invasion of an alien species.  
 
Experience in restoration projects has repeatedly shown, however, that the story of 
successional direction is complex, particularly in a world experiencing drastic changes 
in disturbance regimes (Jentsch and Beierkuhnlein 2003, Aronson and  Vallejo 2006). 
Disturbance and its interactive effects on species colonization and extinction potential 
are a vital part of the dynamics of ecosystem development. Disturbance regimes, 
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including intensity and frequency of disturbance events, are recognized as critical 
drivers of successional trajectories (White and Jentsch 2001). This is partly due to 
disturbances varying in intensity and severity and accordingly in ecosystem legacy. 
Natural and anthropogenic disturbances produce a continuum of conditions between 
extremes termed primary and secondary succession, which differ in the legacies that 
remain from the pre-disturbance ecosystem. The amount and distribution of organic 
matter, the presence and life histories of living organisms, and soil properties all affect 
the recovery mode and rate. The main reasons for the restoration of an ecosystem are 
usually created by anthropogenic and natural disturbances.  
 
1.3 Significance of disturbance for ecosystem dynamics 
 
Disturbance is essential to the survival of many species (Walker et al. 1999). 
Disturbances are ubiquitous, inherent and unavoidable, affecting all levels of biological 
organization. Ecosystems are influenced by disturbances of various kinds, such as fires, 
windstorms, landslides, flooding, logging, grazing, burrowing animals and outbreaks of 
pathogens. Due to natural and anthropogenic disturbances, ecosystems undergo changes 
that are sudden or gradual, dramatic or subtle.  
 
The presence of disturbances in all ecosystems, their occurrence at a wide range of 
spatial and temporal scales, and their continuity across all levels of ecological 
organization is the essence of their importance (White & Jentsch 2001). Together, 
succession, assembly and disturbance theory deal with the processes by which the living 
components of an ecosystem change over time and how the species assemblage present 
at any one time may be explained (Hobbs et al. 2006). Thus, understanding the relation 
between succession, assembly and disturbance helps restoration managers to analyse 
current ecosystem dynamics at restoration sites and to assess impacts of restoration 
action on future ecosystem trajectory. 
 
Organizing disturbances along two spatial (patch and multi-patch) and two temporal 
(event and multi-event) categories can help restoration ecologists to classify insights 
from disturbance ecology and to derive options for disturbance management. Here, the 
patch and multi-patch concept and its implications are introduced after stating 
definitional issues. 
 
1.4 Disturbance definition 
 
According to Pickett and White (1985), disturbance is defined in a neutral way as a 
discrete event in time that disrupts the ecosystem, community or population structure, 
and changes the resources, substrate availability or the physical environment. 
Disturbance descriptors are used to characterize individual disturbances and to describe 
disturbance regimes. These descriptors include: 
 
• Temporal characteristics (such as frequency, duration, and seasonality),  
• Spatial characteristics (such as patch size, shape, and distribution),  
• Magnitude (or intensity),  
• Specificity (to species, size, or age classes),  
• Synergisms (disturbance interactions and feedbacks; white et al. 1999). A 
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disturbance regime is the sum of all disturbances affecting an ecosystem. 
Disturbance in a restoration context is far more than just the event which creates the 
degradation or change of state. Disturbance can be an essential tool of management 
action during the restoration process itself, because it can modify ecosystem 
dynamics. Additionally, disturbance regimes, or the mix of different disturbances 
characterised by their size, frequency and intensity, need to be restored as such, 
because they play a crucial role in dynamics of restored sites in many ecosystems 
(jentsch 2006, warren et al. 2007).   

 
1.5 The patch and multi-patch concept 
 
Disturbances are highly variable in kind, cause, and effect. They act across spatial and 
functional scales, and influence ecosystem composition and structure long after their 
brief duration of occurrence (White and Jentsch 2001). To understand and restore 
dynamics in ecosystems prone to disturbance, it is necessary to measure conditions 
within individual patches, such as species composition, resource availability, the legacy 
of the pre-disturbance ecosystem, and the degree of heterogeneity produced. These 
factors influence ecosystem response. It is further necessary to describe the site quality 
relative to landscape trajectory. Restoration can focus on whether within or between 
patch dynamics have been initiated. Restoration ecologists can assess whether dynamic 
equilibrium is maintained despite or due to disturbance, whether restoration action is 
targeted at sustaining or counteracting ongoing disturbance dynamics.   
 
To understand this diversity in disturbances and responses, restoration managers need a 
general structure for organizing disturbances along spatial and temporal scales 
(Table 1): the patch and multi-patch concept (Jentsch et al. 2002a).   

 
Space / Time Event Multi-Event 
Patch (disturbance) P – E P – ME 
Multi-Patch (landscape) MP – E MP – ME 

 
Table 1: Organizing insights from disturbance ecology in four categories: (1) “patch – 

event”, (2) “patch – multi-event”, (3) “multi-patch – event”, and (4) “multi-patch – 
multi-event”. All findings can be organized in two spatial and two temporal dimensions. 
Examples: (1) one discrete fire event in a forest stand, (2) recurrent flooding dynamics 
in a particular river section, (3) spatially heterogeneous outbreak of an insect pest in a 

particular year, and (4) mowing regime in a cultural landscape (from Hobbs et al. 2006) 
 
The “patch scale” is the spatial extent and period in time of a patch being affected by a 
particular disturbance. Disturbances may destroy biomass, homogenize plant species 
composition, disorganize established patterns of competition, or initiate primary 
succession (Walker & del Moral 2003). Within such a patch, three questions arise: first, 
is the process under consideration related to stress or to disturbance? While a stressor, 
such as enhanced UV-radiation due to higher elevation, is a continuous process, a 
disturbance, such as a fire event, is abrupt and discrete in time relative to the life span of 
the affected organisms (White & Jentsch 2001). Both forces have different implications 
for assembly rules and ecosystem trajectory, and thus to restoration action. Second, 
which ecological legacy survived the intensity of the disturbance event?  The answer to 
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this question influences recovery in terms of nutrient availability, seed survival, and 
heterogeneity of micro-site conditions. These determine restoration actions such as 
assisted recovery. Third, in which way has the disturbance event modified resource 
availability? Restoration actions can establish the target level of productivity, add 
species appropriate to conditions, use disturbance to remove inhibition, increase 
resources, and create turnover to accelerate, decelerate, or halt succession if appropriate 
(White & Jentsch 2004, Hobbs et al. 2006). Properties within a patch are dependent on 
the properties of the surrounding patches, because patches are connected by 
interactions. 
 
At the “multi-patch scale”, meaning aggregates of disturbed and undisturbed patches, 
the focus is on patch interactions, biodiversity, and system dynamics. Here, disturbance 
may reorganize system structure or drive and stabilize pattern dynamics. 
 
• First, does the current disturbance regime have historical precedence so that there 

are functional traits present to cope with it, and the presence of disturbance 
dependent species is supported? Restoration actions should seek to understand the 
long-term event regime and to understand the requirements of the target species that 
sustain ecosystem dynamics (Beierkuhnlein & Jentsch 2005).  

• Second, is there specificity in the disturbance regime? Specificity can modify 
succession by selecting for species, growth forms, or functional traits. Restoration 
actions introduce disturbance at the right stage of successional turnover in order to 
accelerate or arrest succession or produce episodic reproduction in target species. 

• Third, what is the disturbance architecture (Moloney & Levin 1996)? The greater 
the spatial heterogeneity of disturbance, the greater the species diversity of the site 
is. The higher the frequency of disturbance is, the greater the selection for early 
reproduction and fast growing species. Restoration actions can establish the 
disturbance specificity, frequency, and spatial pattern which will promote the 
desired composition and structure (White & Jentsch 2004). 

• Moloney and Levin (1996) have suggested that the concept of disturbance regimes 
be organized according to a three- level architecture: 

• Non-spatial components: rate and intensity of disturbance. The rate of disturbance 
determines the immediate impact of a disturbance regime on the plant community or 
ecological landscape (the proportion of space changed to a different successional 
state). The disturbance intensity determines how the disturbance interacts with 
species' life-history attributes (which defines the new successional state after 
disturbance). The general decrease in overall plant density with an increasing overall 
disturbance rate is an effect that involves the trade-off between disturbance-induced 
mortality and the ability to re-colonize new disturbance-created sites. The 
disturbance intensity determines the functional groups to which that disturbance 
provides additional establishment sites (this is also dependent on competitive ability 
and seed availability). 

• Spatial components: size and shape of individual disturbances. The size, shape and 
correlating structures among individual disturbances determine the rate at which 
disturbed sites can be re-colonized (depending on the species' life-history 
characteristics) and eventually determine the structure of the landscape mosaic. 

• Spatio-temporal components of groups of disturbances: spatial and temporal auto-
correlation among individual disturbances.  
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