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Summary 

Ohmic heating technology was revived in the 1980s because it showed promise in 
particulate sterilization. Although that dream has not yet been fully realized, a number 
of advances have been made regarding the fundamental understanding of this process. 
This has involved research into fundamental fluid mechanics and heat transfer 
phenomena, microbial death kinetics, and the monitoring of temperatures and of 
microbiological and chemical changes within solids. 

Ohmic heating can be extended to a wide array of processes and shows great promise 
for future applications, including the detection of starch gelatinization in solutions and 
pastes, and as a pretreatment for drying and extraction. 

1. Introduction 

Georg Ohm, in 1827, was first to outline what is now known as Ohm’s Law, but 
recognition of the thermal effects of electricity within a conductor was first elucidated 
by James Prescott Joule in 1840. This resulted in a number of patents on the heating of 
flowable materials in the latter part of the nineteenth century. The technology has since 
been revived periodically, having seen industrial application for milk pasteurization in 
the 1930s, before falling out of favor. In the 1980s, the technology was once again 
revived, and some industrial applications have resulted, including pasteurization of 
liquid eggs and processing of fruit products, among others. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

FOOD ENGINEERING – Vol. III - Ohmic Heating - Sastry S.K. 

©Encyclopedia of Life Support Systems (EOLSS) 

The basic principle of ohmic heating is the well-known dissipation of electrical energy 
into heat, which results in internal energy generation proportional to the square of the 
electric field strength and the electrical conductivity: 

2u V σ
⋅
= ∇  (1) 

where the electrical conductivity F is a function of temperature (see Electrical 
Properties). The type of function depends on the material and the method of heating. It 
has been found that for cellular materials, the electrical conductivity undergoes a 
significant increase at 70 C and above, with the denaturation of cell-wall constituents. 
However, when an electric field is applied, cell-wall breakdown occurs at lower 
temperatures; thus, the increase occurs over a wider range of temperatures (Figure 1). 

 

Figure 1. Electrical conductivity of carrot (parallel to stem axis) subjected to various 
electric field strengths. 

Source: Palaniappan and Sastry (1991a) 

Above a certain electric field strength, or if the material has been thermally pretreated, 
the electrical conductivity-temperature curve often becomes linear. Thus, 

0 (1 )mTσ σ= +  (2) 

Since the electrical conductivity increases with temperature, ohmic heating becomes 
more effective at higher temperatures. 

The electrical conductivity of liquid foods tends to follow a linear trend, regardless of 
mode of heating. Since no cellular structure exists, the properties remain essentially the 
same in all liquid foods (Figure 2). 

Since the rate of heating is affected by varying either the electric field strength or 
product electrical conductivity, the technology offers many attractive avenues to the 
process engineer or product developer. It is even possible to design heaters for materials 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

FOOD ENGINEERING – Vol. III - Ohmic Heating - Sastry S.K. 

©Encyclopedia of Life Support Systems (EOLSS) 

of relatively low electrical conductivity if the electric field strength is made sufficiently 
large. 

It is also possible to heat materials at extremely rapid rates. Furthermore, for materials 
of uniform electrical conductivity, energy generation is far more uniform than in 
microwave heating. The basic principles have been addressed in a number of 
publications (see Electrical Properties). 
 

 
 

Figure 2. Electrical conductivity of orange juice subjected to various electric field 
strengths 

Source: Palaniappan and Sastry (1991b) 
 

2. Microbial Death Kinetics 

A number of studies in the literature have considered whether ohmic heating results in a 
nonthermal contribution to microbial lethality. 

Early literature on this topic has been inconclusive, since most studies either did not 
specify sample temperatures, or failed to eliminate this as a variable. It is critically 
important that studies comparing conventional and ohmic heating be conducted under 
temperature histories that are as near-identical as possible. In 1992, researchers 
attempted to compare ohmic and conventional heat treatments on the death kinetics of 
yeast cells (zygo Saccharomyces bacilli) with identical histories, and found no 
difference. However, a mild electrical pretreatment of Escherichia coli decreased the 
subsequent inactivation requirement in certain cases. 

More up to date studies suggest that a mild electroporation-type mechanism may 
operate during ohmic heating. The presence of pore-forming mechanisms on cellular 
tissue has been confirmed by recent work. Another recent study, conducted under near-
identical temperature conditions, indicated that the kinetics of inactivation of Bacillus 
subtilis spores can be accelerated with ohmic treatment. A two-stage ohmic treatment 
(ohmic treatment, followed by a holding time prior to a second heat treatment) was 
found to accelerate death rates further. Study has also indicated that leakage of 
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intracellular constituents of Saccharomyces cerevisiae was found to be enhanced under 
ohmic heating, compared with conventional heating in boiling water. 

The principal reason for the additional effect of ohmic treatment may be the low 
frequency (50–60 Hz) of ohmic heating, which allows cell walls to build up charges and 
form pores. This is in contrast to high-frequency methods, such as radio frequency or 
microwave heating, where the electric field is essentially reversed before a sufficient 
charge build-up (Figure 3). Some contrary evidence has also been noted; in particular, 
the work of Lee and Yoon has indicated that a greater leakage of Saccharomyces 
cerevisiae constituents occurs under high frequencies. However, the details of 
temperature control within this study are not available at the time of writing; thus, it is 
not clear whether or not these researchers have adequately eliminated temperature 
effects. 

 

Figure 3. Illustration of square waves showing the effect of frequency on cell-wall pore 
formation. (a) Low-frequency fields allow membrane potential (dotted line) to build up 

to sufficient levels to cause pore formation. (b) High frequency fields do not permit time 
for pore formation to occur. 

Temperature 
( C) 

D-values for 
conventional 
heating (min-1) 

k for 
conventional 
heating (s-1) 

D-values for 
ohmic heating 
(min-1) 

k for ohmic heating 
(s-1) 

88 32.8 0.00117 30.2 0.001271 
92.3 9.87 0.003889 8.55 0.004489 
95 5.06 0.007586   

95.5   4.38 0.008763 
97 3.05 0.012585   

99.1   1.76 0.021809 
Z value (C) or 

Activation 
energy 

(Ea)(kcal/mol) 

8.74* 70.0** 9.16* 67.5** 

* - Z value; ** - Activation Energy 
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(Source: Cho, H-Y., Yousef, A.E., and Sastry, S.K. (1999). Kinetics of inactivation of 
Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating, 

C 8 . 

Table 1. D-values and kinetic reaction rate constants (k) for B. subtilis spores under 
conventional and ohmic heating 

Stage 
# 

D-values for 
conventional heating 
(min-1) 

k for conventional 
heating (s-1) 

D-values for 
ohmic heating 
(min-1) 

k for ohmic 
heating  

(s-1) 
1 17.1 0.002245 14.2 0.002703 
2 9.2 0.004172 8.5 0.004516 

 
Table 2. D-values and reaction rate constants for inactivation of B. subtilis spores during 

single- and double-stage conventional and ohmic heating at 90 ºC 
Source: Cho H-Y., Yousef A.E., and Sastry S.K. (1999). Kinetics of inactivation of 

Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating, c 
8. 
 

Temperature 
(ºC) 

D-values for 
conventional 
heating (min-1) 

k for 
conventional 
heating (s-1) 

D-values for 
ohmic heating 
(min-1) 

k for ohmic 
heating  

(s-1) 
49.8 294.6 0.008 274.0 0.009 
52.3 149.7 0.016 113.0 0.021 
55.8 47.21 0.049 43.11 0.054 
58.8 16.88 0.137 17.84 0.130 

Z values (C) 
or Activation 
energy (Ea) 
(kcal/mol) 

 

7.19* 29.63** 7.68* 27.77** 

* Z value; **  Activation energy 

Source: Palaniappan S., Sastry S.K., and Richter E.R. (1992). Effects of electroconductive heat treatment 
and electrical pretreatment on thermal death kinetics of selected microorganisms. Biotechnical 
Bioengineering, 39: 225–232. 

Table 3. Kinetic reaction rate constants (k) for zygo Saccharomyces bacilli under 
conventional and ohmic heating. 

- 
- 
- 
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