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Summary 
 
Statistics as a field of study is a branch of applied mathematics dealing with the 
collection, organization, analysis and interpretation of quantitative data. Systems 
designed to interface with and support life must be designed to account for stochasticity 
inherent in biological processes. A statistical framework can be used to, a) quantify the 
degree of variability is stochastic processes, and b) make quantitative predictions on the 
future behavior of these processes. The field of statistical analysis is vast. This article 
provides some mathematical background and guidelines for developing analytical 
procedures to explore, visualize and model biological data. Typical problems associated 
with interpretation and appropriateness of statistical analyses with relevance to 
biological data are discussed. 
 
1. The Need for Statistical Data Analysis 
 
Much of our understanding of the physical world comes from observing the behavior of 
material systems. The observations are called data. Assuming that the system obeys a 
certain set of immutable physical laws, our observations of that system will follow 
certain distinguishable trends. A statistic is the measure of such a trend. Statistics are 
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commonly used in day-to-day conversation, without the explicit knowledge of the field. 
One of the most commonly used statistics is the average or mean. Averages are a 
measure of the centre of any data. Numbers representing, for example, the average 
requirement of oxygen per person per day, or the average life of an air-conditioner unit 
provide a preliminary insight into the behavior of the respective systems. Statistics as a 
field of study helps us identify which of these numbers provide the most insight into the 
behavior of the system, how they may be calculated by designing experiments and 
collecting data, and how one may make meaningful predictions about the behavior of 
the system in the future. A statistical analysis generally involves two related modes of 
analysis: descriptive statistics and inferential statistics.   
 
Statistics provides the framework for quantifying uncertainty in the predicted behavior 
of a system. This is its defining aspect. Any real-life, non-trivial system will exhibit 
some level of uncertainty through random fluctuations in its operation over time. Life 
support systems are no exception. Statistics plays a vital role in understanding the 
science behind, as well as engineering technological advances of life support systems. 
As the name suggests, life support systems interact with life itself. The systems need to 
posses a level of robustness to contend with the large variability characteristic of living 
processes. 
 
Characterizing the trends and variability in a living process helps us make projections 
for the demands that are likely to occur upon the life support systems. The design of the 
systems must reliably and sufficiently handle these predicted demands. Models for the 
projected demand are inherently probabilistic in nature, i.e. they are constructed to 
account for every possible situation likely to occur with any regularity. Every estimate 
is based on a probabilistic model comprising of two parts – the expectation i.e. the 
prediction based on the underlying central trend, and its confidence, an estimate of the 
error in prediction due to the inherent, unaccountable fluctuations in the system. 
 
2. Principles of Statistical Analysis 
 
2.1. Probability – The Foundation of Statistics 
 
Scientific knowledge and engineering design are both based upon finite assumptions 
and therefore incorporate some level of uncertainty. Relationships that are generally 
accepted as cause-and-effect are accepted at a defined level of likelihood. There is 
always a small but positive likelihood that the observed effect may not be due to the 
cause. Understanding the basic concepts of probability is fundamental to computing and 
interpreting statistics. The concept of probability is fairly intuitive. It refers to the 
likelihood with which the outcome of an experiment will be one of its certain outcome 
possibilities. The first instances of a formalized approach of using probability to solving 
certain problems involving dice and gambling are generally attributed to Blaise Pascal 
(1623 – 1662) and Pierre Fermat (1601 – 1665), although numerical probabilities for 
dice had been calculated previously by Galileo Galilei (1564 – 1642).  
 
Although the formalization has come a long way in over 350 years, and has found 
application in the sciences, social sciences, medicine and engineering, a clear 
interpretation of the word probability is still somewhat contentious. Probability can be 
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interpreted as a relative frequency. For example, in a coin toss, the statement “The 
probability of getting a heads in one-half” can be interpreted to mean that if one were to 
toss a coin a very large number of times, half the times it would result in heads. Another 
interpretation relies on the concept of “equally likely outcomes”. Since a coin toss can 
have two outcomes, heads and tails, and assuming these outcomes are equally likely, we 
can say that the probability of each is one-half. This is somewhat convoluted since 
“equally likely” implies “equally probability”, thereby making the above statement a 
circular argument. Fortunately, the mathematical development of probability theory and 
statistics is consistent and provides sufficient tools for interpretation of results relevant 
in science and engineering. 
 
2.2. Basic Axioms of Probability Theory Based on Set Theory. 
 
An experiment in probability theory refers to a process whose outcome is not known in 
advance with certainty but the set of all possible outcomes is known. Thus a coin toss is 
an experiment with two possible outcomes, but a coin toss result cannot be predicted 
with certainty. Similarly biomass yield in an agricultural production system can be 
considered an experiment with a non-negative value, but the exact value cannot be 
predicted. The set of all possible outcomes is known as the sample space; each specific 
outcome is called a point or an element in the sample space. In addition, the probability 
of observing the occurrence of a specific point or element within the sample space is 
also assumed defined. The basic objectives of probability theory are: 
 

1. To enable the computation of the probabilities of combinations of events, and  
2. To enable the revision of the probabilities of events when additional information 

is available. 
 
The computation of combination of events is enabled by basic relationships in set theory 
pertaining to union, intersection and complements of sets. In addition, the following 
axioms are necessary: 
 

1. For any event A within a sample space S, ( )Pr 0A ≥ . i.e. if an event has zero 
probability, it is not legitimately a part of the sample space.  

2. ( )Pr 1S = . For every experiment, some event from S must occur, i.e. the sample 
space S is exhaustive of all the possible outcomes. 

3. ( ) ( )11
Pr Pri iii

A A∞ ∞

==
=∑∪  For a set of disjoint events 1 2, , , iA A A… , the 

probability of the union of all events is the sum of probabilities of individual 
events. 

 
Thus a mathematical definition of probability or more specifically a probability 
distribution is a set of numbers ( )Pr iA  associated with events ( ) , 1, 2, ,iA i n= …  in a 
sample space S that satisfy Axioms 1, 2 and 3. 
 
If some variable X can take values over a sample space S, and there exists a real valued 
function f that assigns a real value f (X = Ai)  to each possible outcome Ai ∈ S , then X is 
known as a random variable. The space S can be discrete-valued space (e.g. number of 
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tomatoes per plant) or continuous (e.g. the weight of an individual tomato). The 
function f is called the probability mass function for a discrete sample space or a 
probability density function (abbreviated as p.d.f.) for a continuous sample space. The 
important corollary of the second axiom mentioned above, i.e. ( )Pr 1S = , is that the 
sum of the p.d.f. over all possible values taken by the random variable is unity. For 
discrete sample spaces, ( ) 1f x∞

−∞
=∑ , and for continuous functions, ( ) 1f x dx

∞
=∫ . 

The function f can also be mixed distribution having discrete points and p.d.f. values 
over continuous intervals. Another important definition is the cumulative density 
function F(x). (also known as the distribution function). The p.d.f. f(x) and the c.d.f. F(x) 
are mathematically related as follows: 

( ) ( )
x

F x f x dx
−∞

= ∫         (1) 

 
2.3. Types of Probability Distributions 
 
There are several different types of probability density functions used to model process 
often encountered in engineering and naturally occurring situations. Such distributions 
are well-defined mathematical expressions with well-defined properties such as mean 
and variance. .Some basic distributions commonly used in engineering applications are 
described below: 
 
2.3.1. The Uniform Distribution 
 
Consider a process such as rolling a fair die. It will result in one of six possible 
outcomes, each equally likely. The outcome will follow a uniform distribution. If there 
exists a random variable X that is equally likely to take on values from 1,2,…k, then the 
p.d.f. of X is given by: 
 

( )
1 for 1,2, ,
0 otherwise
k x k

f x
=⎧ ⎫

= ⎨ ⎬
⎩ ⎭

…
      (2) 

 
This is a discrete distribution called the uniform distribution on integers. Since any 
distribution must add up to 1, (by Axiom 2), this implies that the sample space must be 
finite. 
A continuous distribution over a finite interval (a, b) can be represented as: 
 

( ) ( ) ( )1 for ,

0 otherwise
b a x a b

f x − ∈⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

      (3) 

 
The uniform distribution is the simplest of distributions that can be used to generate 
random numbers for simulation and design of experiments.  
 
2.3.2. The Binomial Distribution 
 
An experiment where only two outcomes are possible is known as a Bernoulli trial. 
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Examples of such a process include a coin toss, a quality control process where an item 
is judged defective or not. When such Bernoulli trials occur in batches, i.e. the total 
number of heads in 10 coin tosses, or the number of defective parts per container of 100, 
the process follows a binomial distribution. 
 
Consider a machine that produces parts that have a probability 0<p<1 of being defective. 
If n items are independently produced by the machine and if X is the number of 
defectives it has produced (where X is between 0 and n), then the probability of X taking 
a specific value x is given by: 
 

( )Pr x n xn
X x p q

x
−⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

       (4) 

 
The p.d.f. becomes  
 

( )
for 0,1,2,

0 otherwise

x n xn
p q x n

f x x
−⎧ ⎫⎛ ⎞

=⎪ ⎪⎜ ⎟= ⎨ ⎬⎝ ⎠
⎪ ⎪
⎩ ⎭

…
     (5) 

 
2.3.3. The Poisson Distribution 
 
In the binomial distribution, if n is large and p is small, then the number of defectives x 
in a process will have a distribution that approaches a Poisson’s distribution where 

npλ = . The Poisson’s distribution is a natural model for discrete processes that have 
small probabilities of an undesirable outcome. Such process, e.g., include the relatively 
rare occurrence of a defective unit in a manufacturing process. The mathematical 
expression of a Poisson’s p.d.f. is: 
 

( ) ! for 0,1,2,
0 otherwise

xe
x x

f x
λλ−⎧ ⎫=⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭

…
      (6) 

 
The Poisson distribution is used in several engineering and industrial applications, 
including quality control and queuing theory in communications.  
 
2.3.4. The Exponential Distribution 
 
An exponentially distributed, continuous random variable has a distribution defined as:  
 

( ) for 0
0 otherwise

xe x
f x

λλ −⎧ ⎫≥
= ⎨ ⎬
⎩ ⎭

       (7) 

 
As can be seen, the distribution is defined on non-negative values for the random 
variable. This distribution is very useful, as it requires only one parameter; λ in order to 
completely define it. The exponential distribution is the special case of a family of 
distributions that are widely used in reliability studies. It is related to the Poisson 
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distribution in that the interval between two failures in a Poisson process is 
exponentially distributed.  
 
2.3.5. The Normal Distribution 
 
The normal distribution is perhaps the most widely-known and used distribution of all. 
It is a continuous distribution defined over the entire number line (-∞, ∞). The p.d.f. is 
given by  
 

( )
( )2

221 for
2

x

f x e x
μ

σ

πσ

− −

= −∞ < < ∞      (8) 

 
The normal distribution is completely defined by two parameters, μ and σ, the mean and 
standard deviation of the distribution. The function represents the familiar bell-shaped 
curve shown in Figure 1. The mean indicates the central tendency while the standard 
deviation indicates the spread of the distribution. 
 

 
 

Figure 1: The normal distributions. In this plot, the mean μ = 0 and the standard 
deviation σ = 1. When μ and σ are 0 and 1 respectively, the distribution is called the 

standard normal distribution. 
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The normal distribution is widely used owing to its mathematical convenience. Various 
functions of normally distributed random variables can be explicitly shown to be 
normally distributed. Many natural processes and measurements themselves have 
distributions that can be approximated to be normal. Finally, the central limit theorem, 
which states that if a large sample is observed from any normal or  non-normal 
distribution, the important properties (i.e. the statistics) of that sample will be 
approximately normally distributed. These reasons make the normal distribution the 
most useful and versatile for computing statistics, making predictions and performing 
simulations.  
 
One of the most convenient tools used in the analysis of normally distributed variable is 
the process of mapping any normal distribution N(μ, σ) with mean μ and standard 
deviation σ to the standard normal distribution N(0, 1) with mean 0 and standard 
deviation of value 1. The mapping function is known as the normal transformation or 
the Z-score and is defined as ( )z x μ σ= − . The convenience of this transformation 
stems from the fact that the area contained under all probability distributions has a value 
of one, i.e., ( )( )1f x dx

∞
=∫ . The consistency in mapping from the variable x under N(μ, 

σ) to z under N(0, 1) is mathematically expressed as ( ) ( )x zF x F z= . This implies that 
the distribution functions at x and its corresponding z-score have equal magnitudes. This 
property allows for the convenience of publishing statistical tables of only the standard 
normal distribution tables. The distribution function values for any other normal 
distribution can be computed simply form the normal transformation. 
 
2.4. Outcome and Expectation 
 
Consider a discrete random variable X having a probability mass function ( )p x . The 

expected value [ ]( )E X  is the average of all the possible outcomes, weighted according 

to their respective occurrence probabilities. Thus for all x such that ( ) 0p x > , the 
expected value becomes: 
 
[ ] ( )

( ): 0x p x
E X xp x

>

= ∑         (9) 

 
If X is a continuous variable with a probability density function ( )f x , the expected 
value is: 
 

[ ] ( )E X xf x dx
∞

−∞
= ∫         (10) 

 
The expected value can be interpreted as the centre of gravity of the probability density 
function. Expectations of functions of x can also be computed.  
 
If there exists a function ( )g x , its expected value can be computed as:   
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( ) ( ) ( )E g X g x f x dx
∞

−∞
=⎡ ⎤⎣ ⎦ ∫       (11) 

 
If the function ( )g x  is of the form kX  and if kX < ∞ , then kE X⎡ ⎤

⎣ ⎦  is known as the 

kth moment of the distribution. The basic statistic, the mean, is the first moment of a 
distribution, with 1k = . The variance (the second central moment) is the difference 
between the second moment and the square of the mean μ . i.e. [ ] ( )2Var X E X μ⎡ ⎤= −⎣ ⎦ . 

 
- 
- 
- 
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