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Summary 
 
This chapter reviews a vast literature on the application of network theory to financial 
markets. The investigated networks are divided in two main categories, similarity based 
networks and direct interaction networks. In the first type of networks a link between 
two nodes represents a similarity in the behavior or activity of the agents (traders, 
investors, firms, stocks, banks, etc.) represented by the nodes. In the second case the 
link represents a quantity exchanged or, more generally, a direct dependence (ownership, 
credit, etc.) between the agents. For similarity based networks this chapter reviews 
several recent methods to extract a network from a similarity matrix with a special 
emphasis to correlation based networks, i.e. networks where the similarity measure is 
the linear cross correlation. These methods include the threshold networks, the 
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minimum spanning trees, and the planar maximally filtered graphs. The financial 
investigated systems include: price returns and volatilities of a portfolio of stocks or 
market indices, interest rates, hedge funds, and financial agents. For the direct 
interaction networks, this chapter describes the empirical results obtained by 
investigating large databases describing board of directors, ownership networks, 
interbank and payment bank networks, and credit networks. It is shown here how these 
network are built from large databases and the empirical topological properties of these 
networks.  
 
1. Introduction 
 
The application of networks in Finance is relatively recent but has exploded in the last 
decades. It is impossible to account for all the approaches that have been pursued (for 
approaches different form the one followed here, see, for example, Ref. [1, 2]). This 
chapter mainly focuses on (i) methodological aspects, i.e. which types of networks can 
be constructed for financial systems, (ii) empirical results on networks obtained by 
investigating large databases of financial data ranging from individual transactions in a 
financial market to strategic decisions at a bank level, and (iii) the use of networks to 
validate simple models with real data. In other words, this chapter surveys a subsample 
of the empirical works that have been performed on the analysis of financial networks 
extracted from data and the comparison of the properties of the obtained networks with 
financial models. An important classification of networks in general, and that will be 
considered here, is the one that divides networks in similarity based networks and direct 
interaction networks. To be specific in the case of financial case consider a network 
whose nodes are financial agents (investors, banks, hedge funds, etc.). What is the 
meaning of the links? In similarity based networks a link between two nodes exists if 
the two nodes (agents) have a strong similarity in their characteristics, strategy, behavior, 
etc.. In this case one needs to assign a criterion to establish whether the similarity 
between two agents is relevant and is associated to a link. Moreover the agents may also 
not interact directly, but if they are similar enough they are connected. By converse in 
direct interaction networks a link between two nodes signals the presence of an 
interaction between the entities represented by the two nodes connected by the link. In 
the financial case the interaction can be a transaction between two agents, a ownership 
relation of one node with respect to the other, a credit relation, etc. both types of 
networks will be considered here and several instances of both will be shown here. 
More specifically, Section 2 considers methods for similarity based networks and their 
application in Finance, whereas Section 3 discusses several examples of direct 
interaction networks in financial systems. Section 4 concludes. The choice of the topics 
reflects the knowledge and the interest of the author and it has no ambition to cover all 
topics. 
 
2. Similarity Based Networks 
 
In recent years there has been a growing interest in applying concepts and tools of 
similarity based graphs to financial data. This section will review the definition of 
similarity based graphs and the author will summarize the application of such graphs to 
financial markets. A similarity based graph is a graph where the links between nodes 
convey information on the similarity between the entities represented by the nodes. To 
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be specific, consider a system composed of N  elements. Each element is represented 
by T  variables. These may be variables describing different properties of the elements 
or they can represent values of the variables at different times. In this latter case the 
elements are represented by time series. It is possible to define in many different ways a 
similarity   N N×  matrix C  associated to the system, where the generic element ijc is 
the similarity between element i  and j . Clearly, one can also consider dissimilarity 
measures, such as for example distance measures. It is natural to associate a weighted 
and completely connected network to a similarity matrix. Each of the N  elements is 
represented by a node and the link connecting node i  and j  is associated to a weight 
related to ijc  . Unfortunately this equivalent representation of the similarity matrix is 
typically not very useful or enlightening. Apart from some exceptional cases, the 
corresponding network is completely connected and thus the topology is in some sense 
trivial. Of course important information is contained in the weights, i.e. the similarities, 
associated with the links. Very often similarity measures are statistical variables. A 
typical example discussed below is the correlation coefficient between two time series. 
This means that, for example, a similarity might be different from zero also when the 
two elements are unrelated because of statistical fluctuations. Moreover the number of 
different similarity indicators to be estimated is typically large, making the problem of 
statistical fluctuations more relevant. This is a very common problem in multivariate 
analysis and it is sometime called curse of dimensionality. The problem is that the 
similarity (or correlation) matrix has ( ) 21 / 2 ~N N N− distinct elements that must 
be estimated. The number of data points for this estimation is NT . Therefore, unless 
T N� , the statistical reliability of the similarity matrix is small. This fact implies that 
great part of the similarity matrix is affected by statistical noise and it is difficult to 
discriminate the noise from the signal. This fact has also practical implications (see also 
below for an example in portfolio optimization). The challenge is then to devise 
methods to filter the similarity matrix by retaining only the “part” which is statistically 
more significant. What the word part means discriminates among different filtering 
procedures. In many cases of interest here the filtering of the similarity matrix destroys 
the complete connectedness of the network. If the filtering procedure is able to remove 
the noise from the similarity matrix, the topology of the network representing the 
filtered similarity matrix can give important insight on the true similarity structure of 
the system. The different ways in which one filters the similarity matrix lead to different 
graphs which are then investigated by using tools of network theory. 
 
2.1. Correlation based graphs: Introduction 
 
A specific, but important, example of similarity indicators is the case of correlation 
matrices which is the matrix whose element ijρ  is the linear (or Pearson’s) cross 
correlation between element i  and j . This defined as, 
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where ri and rj are the investigated variables and the symbol < >…  is a statistical 
average defined as 
 

1,

1 ( )i i
k T

r r k
T =

= ∑        1,...k T=  

 
and ( ) ir k  is the k −th variable of element i . The correlation coefficient has values 
between −1 and +1, corresponding, respectively, to perfectly anticorrelated and 
perfectly correlated (i.e. identical) variables. A correlation coefficient equal to zero 
means that the two variables are uncorrelated. It is important to stress that two 
uncorrelated variables are not necessarily independent (while the opposite is true), 
because non linear correlation may be significant. Apart the Pearson’s correlation 
defined above, there are many other definitions of correlation between elements, such as 
for example the Kendall’s tau and the Spearman rank coefficient [3]. 
 
A measures of dissimilarity are distances ijd  between the vectors ir

G
 and jrG  defined in 

the T  dimensional space by the components ( ) ir k  and ( ) jr k . The most common 
distance is the 
 
Euclidean distance 
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but there are many other possible distance definitions (e.g. the Manhattan distance, the 
p -norm distance, etc.). A distance ijd fulfills the three axioms of a metric – (i) 

 0ijd =  if and only if   i j= ; (ii) ij jid d= and (iii) ij ik kjd d d≤ + . Any distance is 
a dissimilarity measure, i.e. the larger the distance, the smaller the similarity. It is 
interesting to note that the linear correlation coefficient of Eq. (1) can be associated to a 
metric distance [4, 5]. In fact, if one standardizes the variables by subtracting the mean 
and dividing by the standard deviation, 
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the cross correlation iρ

~  between ir~  and jr~ is related to the Euclidean distance 
E
ijd� between  the corresponding vectors by the relation 
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This shows that cross correlation is related to a distance measure. Given the 
monotonicity of this relation, most of the results that the author shows below holds both 
for correlation coefficient and for the associated distance E

ijd� . 
 
2.2. Correlation Based Graphs: Methods 
 
Here the author describes several methods to filter correlation matrices. Even if 
explicitly linear correlation is considered, the methods described below work also for 
generic similarity measures. 
 
- 
- 
- 
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