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Summary 
 
This chapter begins by considering some fundamental properties of the state-variable 
representation of systems. These are intended, on the one hand, to clarify the relations 
with the frequency domain approach, and, on the other hand, are the basis for the 
controller and estimator design presented in the related chapters. Section 5 introduces 
two essential concepts of state space analysis: controllability and observability. Having 
defined these terms, four different criteria of controllability and observability will be 
discussed. Some remarks on poles, eigenvalues, zeros, and pole-zero cancellation 
complete the chapter.  
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1. Extraction of the State Space Representation from the Transfer Function G(s)  
 
One way of getting the state space representation of a system has already been 
illustrated in Design of State Space Controllers (Pole Placement) for SISO Systems 
when the model of the inverted pendulum was derived; from the underlying physical 
equations and by eliminating some auxiliary variables, a state space model of the type  
 
State differential equation: ( ) ( ) ( )t t u t= +x Ax b� ,   (1) 
 
Output equation: T( ) ( )y t t= c x ,  (2) 
 
can often be determined in a straight forward manner. If, however, such a theoretical 
modeling is not possible but a system model in terms of a transfer function G(s) is 
available (e.g. obtained from model identification, see Modeling and Simulation of 
Dynamic Systems, Frequency Domain System Identification, Identification of Linear 
Systems in Time Domain, Identification of Nonlinear Systems, Bound-based 
Identification, and Practical Issues of System Identification), then the question arises, 
how this model G(s) can be converted into the state space representation (1), (2). A 
solution to this problem may be expected, since the reverse operation, the determination 
of the transfer function from the state equations, turns out to be a simple operation, 
 

( ) ( ) ( )Y s G s U s= ,     where      T 1( ) ( )G s s −= −c I A b , (3) 
 
(See Design of State Space Controllers (Pole Placement) for SISO Systems). The task of 
determining state Eqs. (1), (2) from a given transfer function G(s) can be solved by 
different approaches. Three of them are presented here: 
 
1.1. Solution 1: Control Canonical Form 
 
Problem 1a): Let the system model be given by the transfer function G(s), 
 

1
1 0

( )

1( ) ( )
...n n

n

G s

Y s U s
s a s a−

−

= ⋅
+ + +����	���


,  (4) 

 
or equivalently by the ordinary differential equation 
 
( )

1 0...
n

y a y a y u+ + + =� .  (5) 
 
Find a state-variable representation (1), (2) with the same input-output 
relation ( ) ( ) ( )Y s G s U s= .  
 
Solution : The state variables are defined as 
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From this, n-1 simultaneous first-order differential equations are obtained immediately, 
and by substituting them into (5) a total of n differential equations is obtained, 
 

1 2

2 3

1

0 1 1 2 1...
n n

n n n

x x
x x

x x
x a x a x a x u

−

−

=
=

=
= − − − +

�
�
#
�
�

    or    

0 1 1

0 1 0 0
0 0

0 1 0
1n

u

a a a −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦

x x

…
% % #

�

…

,  (7) 

 
either in a scalar representation (left) or in a matrix-vector representation u= +x Ax b�  
(right), which is the demanded state differential equation. The corresponding output 
equation Ty = c x  is given by (6), 
 

1y x=    or      [ ]1 0 0y = x" .  (8) 
 
Problem 1b): Extending problem 1a), the nominator of G(s) is a polynomial now, i.e. 
the system is described by 
 

1 2
1 2 0

1
1 0

( )

...( ) ( )
...

n n
n n

n n
n

G s

b s b s bY s U s
s a s a

− −
− −

−
−

+ + +
=

+ + +�����	����

,  (9) 

 
or equivalently by the differential equation 
 
( ) ( 1)

1 0 1 1 0... ...
n n

ny a y a y b u b u b u
−

−+ + + = + + +� � .  (10) 
 
Solution: First, (9) is rewritten as 
 

*

* 1 *
0 1 1

0

( )

1( ) ( ) ( ) ... ( )
...

n
nn

Y s

Y s b U s b sY s b s Y s
s a

−
−= + + +

+ +���	��

, (11) 
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or equivalently in time domain, 
 

*( 1)
* *

0 1 1( ) ( ) ( ) ... ( )
n

ny t b y t b y t b y t
−

−= + + +� .  (12) 
 
For the representation of ( )Y s∗  and ( )y t∗  the solution to problem 1a) is used: 
 

0 1 1

0 1 0 0
0 0

0 1 0
1n

u

a a a −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦

x x

…
% % #

�

…

,  (13) 

 
[ ]*

1 1 0 0y x= = x" .  (14) 
 
With *

1y x= , *
1 2y x x= =� � , *

2 3y x x= =�� � ,... the output y(t) from (12) becomes 
 

[ ]0 1 1 0 1... n n ny b x b x b b− −= + + = x" .  (15) 
 
Together, (13) and (15) are the result which is given an own name:  
 
The state space model of the form 
 

0 1 1

0 1 0 0
0 0

0 1 0
1n

u

a a a −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦

x x

…
% % #

�
%

…

, (16) 

 
[ ]0 1ny b b −= x"  (17) 

 
is called Control Canonical Form and has the transfer function 
 

1 2
1 2 0

1
1 0

...( )( )
( ) ...

n n
n n

n n
n

b s b s bY sG s
U s s a s a

− −
− −

−
−

+ + +
= =

+ + +
. (18) 

 
1.2. Solution 2: Observer Canonical Form 
 
In full analogy to the control canonical form, a so-called observer canonical form can be 
derived. This canonical form can simplify the observer design and is given here without 
further details: 
 
The state space model of the form 
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0 0

1 1

1 1

0 0
1
0 0

0 1 n n

a b
a b

u

a b− −

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

x x

…
% %

�
% # #

…

, (19) 

 
[ ]0 0 1y = x"  (20) 

 
is called control canonical form and has the transfer function 
 

1 2
1 2 0

1
1 0

...( )( )
( ) ...

n n
n n

n n
n

b s b s bY sG s
U s s a s a

− −
− −

−
−

+ + +
= =

+ + + . (21) 
 
The term control is used because the design of state-feedback controllers will turn out to 
be particularly simple when starting from the control canonical form (See Controller 
Design).  
 
Note that in the control canonical form each parameter of the transfer function only 
occurs once and that no calculation is required for writing down the state equations. In 
particular, the elements of the last row of the system matrix A represent the negative 
coefficients of the denominator of G(s).  
 
The special structure of the control canonical form is also expressed by its characteristic 
block diagram, shown in Figure 1.  
 

 
 

Figure 1:   Block diagram of a system in control canonical form 
 

Example:  The model of the inverted pendulum with the transfer function 
 

4 2
10( )
16

G s
s s
−

=
−

  (22) 

 

can be represented in control canonical form 
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0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 16 0 1

u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x� ,   [ ]10 0 0 0y = − x . (23) 

 

 
 

Figure 2:   Block diagram of a system in observer canonical form 
 

1.3. Solution 3: Modal Canonical Form (Diagonal and Jordan Canonical Form) 
 
Problem 3a): Let the system model be given by the transfer function G(s) from (9). Its 
poles (i.e. the zeros of its denominator) are assumed to be distinct (real or complex 
conjugate), so that a partial fraction expansion is given by 
 

1

1
( ) ... ( )n

n

rr
Y s U s

s sλ λ
⎛ ⎞

= + + ⋅⎜ ⎟
− −⎝ ⎠

.  (24) 

 
Find a state space representation (1), (2) with the same input-output 
relation ( ) ( ) ( )Y s G s U s= .  
 
Solution: The state variables are defined as 
 

1
1

1( ) ( )X s U s
s λ

=
−

, ... , 1( ) ( )n
n

X s U s
s λ

=
−

,  (25) 

 
or equivalently in time domain, 
 

1 1 1x x uλ= +� , ... , n n nx x uλ= +� .  (26) 
 
These are in fact the n differential equations forming the state differential Eq. (1). The 
output equation is determined by substituting (25) into (24) and transforming into time 
domain: 
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1 1 1 1( ) ( ) ... ( ) ( ) ...n n n nY s r X s r X s y t r x r x= + + ⇒ = + + . (27) 
 
The state space model of the form 
 

N N N

1 1 1

( ) ( )

0 1
0 ( )

1n n n

t t

x x
u t

x x

λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x bA�

� …
# % # #
� #���	��


, (28) 
 

[ ]
N

1

1

( )

T

n

n

t

x
y r r

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦c

x

… #��	�


 (29) 
 
is called modal canonical form. Because A is a diagonal matrix, it is also called diagonal 
form of a system, and instead of A the letter Λ  is used. The corresponding transfer 
function is 
 

1

1

( )( ) ...
( )

n

n

rrY sG s
U s s sλ λ

= = + +
− − . (30) 

 
Note that the n differential Eqs. (26) or (28) are fully decoupled: None of the n state 
variables is influenced by any other state variable. Therefore, these scalar differential 
equations can be examined separately, which is advantageous in many contexts. 
However, the poles iλ  and the residues ir  may be complex numbers which can 
somewhat complicate the handling. A further special feature of the modal canonical 
form is the fact that stability can easily be inspected by looking at the poles iλ  of G(s) 
occurring as diagonal elements of A.  

 
 

Figure 3:   Block diagram of a system in diagonal form 
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Problem 3b): The assumption of distinct poles is dropped now, i.e. the transfer function 
G(s) may have multiple poles. In particular, G(s) is assumed to have a pole 

1 2 ... kλ λ λ= = =  of magnitude k and distinct poles 1,...,k nλ λ+ . Partial fraction expansion 
of G(s) then results in 
 

1 2
2

1 11 1
( ) ... ( )

( ) ( )

n
k i

k
ii k

r rr r
Y s U s

s ss sλ λλ λ = +

⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟− −− −⎝ ⎠

∑ . (31) 

 
Find a state space representation. 
 
Solution: Again, each summand of (31) is assigned one state variable,  
 

1
1

2 12
11

1
1

1( ) ( )

1 1( ) ( ) ( )
( )

1( ) ( )k k

X s U s
s

X s U s X s
ss

X s X s
s

λ

λλ

λ −

=
−

= =
−−

= =
−

#

…

  (32) 

 

1
1

1( ) ( )k
k

X s U s
s λ+

+
=

−
, ... , 1( ) ( )n

n
X s U s

s λ
=

−
, 

 
and again these equations are considered in time domain, 
 

1 1 1

2 1 2 1

1 1k k k

x x u
x x x

x x x

λ
λ

λ −

= +
= +

= +

�
�
#
�

  (33) 

 
1 1 1k k kx x uλ+ + += +� , ... , n n nx x uλ= +� , 

 
delivering the n scalar state differential equations. The output equation is 
 

1 1 1 1( ) ( ) ... ( ) ( ) ...n n n nY s r X s r X s y t r x r x= + + ⇒ = + + . (34) 
 
The state space model of the form 
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1

1

1

1

0 0 1
1 00

0
0 1 0

0 1
0 1

0 1

k

n

u

λ
λ

λ
λ

λ

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A

x x

"
#

% % #
�

%

�������	������

, (35) 

 
[ ]1 ny r r= x"  (36) 

 
is called Jordan canonical form and is also a modal canonical form. Although the system 
matrix is only “close to diagonal”, the Jordan canonical form is sometimes referred to as 
diagonal form, and the letter Λ  is used instead of A. The “close to diagonal” block in 
the left upper corner of A is called Jordan block and has dimensions (k,k). The 
corresponding transfer function is 
 

1 2
2

11 1 1

( )( ) ...
( ) ( ) ( )

n
k i

k
i k i

r rr rY sG s
U s s s s sλ λ λ λ= +

= = + + + +
− − − −∑

. (37) 
 
If several multiple poles occur in G(s) the steps shown above are adapted accordingly. 
The system matrix A will then comprise several Jordan blocks. The dimension of each 
Jordan block equals the magnitude of the corresponding pole.  
 
Example: The transfer function of the balanced pendulum has a zero pole with 
magnitude two. The partial fraction expansion is 
 

4 2 2
10 0 5 / 8 5 / 64 5 / 64( )

4 416
G s

s s ss s s
− −

= = + + +
− +−

.  (38) 

 
Therefore the state space representation of the system is obtained in Jordan canonical 
form: 
 

0 0 0 0 1
1 0 0 0 0
0 0 4 0 1
0 0 0 4 1

u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

x x� ,   [ ]0 5 / 8 5 / 64 5 / 64y = − x . (39) 
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