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Summary 
 
The combination of state feedback with a state observer provides a powerful tool for 
designing linear control systems. However, the steady state behavior in the presence of 
model uncertainty or permanent disturbances turns out to be unsatisfactory.  
 
This disadvantage can be overcome with the help of an overlying PI-controller. Another 
structural extension of the control systems introduced so far is the introduction of a 
dynamic model-based pre-compensator. It allows the designer to separately shape the 
disturbance- and the input-output behavior of the control system.  
 
1. Steady State Behavior under realistic assumptions 
 
Figure 1 shows the arrangement of a control plant with state observer and state 
feedback, as introduced in the previous articles. The pre-compensator gain g is selected 
so that the control output y converges towards the (constant) reference r  as t →∞ .  
 
The only disturbance acting on the system is the unknown initial state 0 0( )t =x x . As the 
initial time 0t  of the consideration can be set arbitrarily, we can establish that this 
control system will eliminate those disturbances vanishing from a certain time 0t  on.  
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Figure 1:  Close-loop system with state observer and state feedback 
 
1.1 External Disturbances 
 
The situation changes in case of permanent disturbances. Then, in many cases the 
influence of a disturbance variable ( )z t  on the state differential equation can be 
modeled by a linear term, and the state equations can be extended by a corresponding 
summand ( )z te ,  
 

( ) ( ) ( ) ( )t t u t z t= + +x Ax b e ,  (1) 
 

Ty = c x .  (2) 
 
The input-output behavior from the disturbance input z to the control output y can then 
be expressed (after Laplace transform): 
 

T 1 T 1( ) ( ) ( ) ( ) ( )Y s s U s s Z s− −= − + −c I A b c I A e .   (3) 
 
If a pure state feedback controller without observer is used for the control of this plant, 
the input-output relation of the closed-loop system becomes  
 

T T 1 T 1

( ) ( )

( ) ( ) ( ) ( ) ( )
r z

T

G s G s

Y s s g R s s Z s− −= − + + − +c I A bk b c I A bk e . (4) 

 
The second summand describes the effect of the disturbance on the control output. In 
general, the disturbance transfer function ( )zG s  will not equal zero and even simple 
constant disturbances ( ) constz t = . will cause permanent steady state error, i.e. a 
permanent nonzero difference between y  and r . Since all poles of ( )zG s  obviously are 
control eigenvalues, we can at least state that the disturbance z  does not affect the 
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general stability properties of the closed-loop system.  
 
Finite disturbances will cause finite reactions in the control output y, provided the 
amplitude of the disturbance does not cause system variables to reach their natural 
boundaries or the linear model to loose validity for other reasons. These observations 
are also true when including an observer. In case of several disturbances 1( ),..., ( )mz t z t , 
they can be modeled by several corresponding summands ( )z tν νe  in the state equations.  
 
In case of finite permanent disturbances z acting according to (1) on the plant within a 
closed-loop system (with or without observer), the control output y  will in general no 
longer follow the reference signal r , i.e. steady state error will occur. Stability is not 
affected.  
 
The problem is not so easy surveyed if the influence of disturbances is in a nonlinear 
manner or cannot be described precisely at all. Then, with the means available here, we 
can not predict the system behavior.  
 
However, in many practical applications, we may assume that the closed-loop system, 
designed without consideration of disturbances, will approximately perform in the 
expected way, and, in particular, will stabilize the real system. The remaining problem 
is then the steady state error. It will be overcome in the next section by a PI-controller 
added to the state feedback.  
 
Other state space methods for improving the disturbance behavior are presented in other 
articles of this work. They are only mentioned here without details: 
 
• If a disturbance variable can be measured (which will only be possible in 

exceptional cases) and at the same time if its influence on the system is described by 
the state equations, then a so-called disturbance feedback can be designed. It 
generates a control input u counteracting the influence of the disturbance.  

• If, however, the disturbance is not accessible to measurement but its characteristic 
form is roughly known (typically slow, approximately constant disturbances or 
periodic disturbances of known frequency), then its influence can be modeled by a 
so-called disturbance model consisting of additional homogeneous state differential 
equations. A state observer for the resulting extended system can then be introduced 
to estimate the disturbances. This estimate is used to run a disturbance feedback.  

• Sometimes a conventional state feedback law can be found such that the influence of 
a disturbance z on y can fully be suppressed. The disturbance transfer function 

( )zG s  equals zero in that case. This situation is called disturbance decoupling.  
 
1.2 Model Uncertainty and Parameter Variations 
 
Further factors influencing the behavior of any real system are uncertainties in the 
linear system model and variations of system parameters over time. The elements of the 
matrices T, ,A  b  c , describing the plants considered here, never will precisely reflect the 
parameters of the real system, either because they are neither by calculation nor by 
measurement available precisely, or, because the assumption of linearity is only 
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approximately fulfilled. In addition, the system parameters may change over time. This 
can happen slowly, for instance the friction coefficient of a bearing, or abrupt, for 
instance when the loading of a car changes.  
 
Counteracting the influence of such problems and specifying the allowable intervals of 
system parameters is a goal of robust control. It is presented in other topic articles of 
this work.  
 
In the context of state space design, if we assume the influence of model uncertainty and 
parameter variations being sufficiently small (so that stability is preserved and dynamic 
behavior is roughly as expected), the most significant problem remaining is steady state 
error. It can be eliminated by PI-state-feedback control.  
 
- 
- 
- 
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