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Summary 
 
System identification deals with determining models of dynamical systems from 
measured input and output signals. Model structures in the form of prediction models 
are particularly suitable both from a conceptual and a statistical point of view. This 
paper describes two basic estimation methods which calculate estimates of the 
prediction model parameters from measurements of input and output signals. The 
simple, yet widely used linear least squares (LS) method and the closely related 
instrumental variable (IV) method are covered. Both methods are based on a prediction 
model structure which is linearly parameterized.  
 
In the LS method the parameter estimate minimizes the sum of the squared prediction 
errors between the prediction model and the output data. The IV method is a slight 
variation of the LS method which has the ability to counteract the effects of a more 
general class of noise signals which if using the LS method would make the parameter 
estimate biased. The statistical background regarding bias and variance is covered in 
depth for the simple LS case when the predictor is independent of the noise. For the 
more general case when the predictor involves past output measurements we only 
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comment on results from the literature. Conceptually they resemble the simple case. 
Details are provided on how to numerically calculate estimates and to provide insight 
into detecting and handling numerically ill-conditioned situations. 
 
1. Introduction 
 
The least squares method (LS) together with the closely related instrumental variable 
method (IV) are the most common methods for solving a wide range of estimation 
problems occurring in numerous applications. Examples can be found in astronomy, 
physics, economics, medicine, and of course, in most engineering applications. A 
standard usage is that a particular phenomenon is to be modeled by means of a 
mathematical model. A parameterized model structure is selected defining a feasible 
model set. Based on empirical knowledge of the phenomenon under study, often in the 
form of measurements, a model is selected from the model set based on a model 
selection criterion.  
 
If the model selection criterion is a minimization of a quadratic function the LS and IV 
methods can often be applied. Both methods share the important property that the 
parametric estimate of the model parameters can be found by numerically stable 
computations with predictable numerical errors and manageable computational 
complexity. The focus of this chapter is the estimation of parameters of dynamical 
systems which is an important task in the model based control engineering. A linear 
regression framework will be adopted where predictor models are linear functions of the 
unknown parameters.  
 
Digital processing of signals implies that the data is always sampled. Hence, the focus 
here will be on estimation of discrete time linear systems from sampled data, see also 
(Discrete-Time, Sampled-Data, Digital Control Systems, Quantization Effects) and 
(Discrete-Time Equivalents to Continuous-Time Systems). If the underlying application 
dictates a continuous time model several routes are possible. The LS and IV techniques 
presented here can also be reformulated to directly estimate continuous time or delta 
operator models by prefiltering the data and forming regressors in a different fashion. 
Please refer to (Frequency Domain System Identification) and (Continuous-time 
Identification) for further details. 
 
The estimation of the model parameters can be done in two different ways. In batch-
type estimation all available data in the data set is used to determine an estimate. For 
on-line applications where a model continuously needs to be updated, a recursive 
methodology is then very common. When a new data sample is available the estimate of 
the model parameters is updated based on the new data and the past estimate and data. 
Both the LS and the IV methods can be implemented as batch-type algorithms or as 
recursive algorithms. In this chapter only the batch-type will be presented and the reader 
is referred to (Recursive Algorithms) for a deeper discussion on the recursive 
algorithms. 
 
The history of estimation and system identification dates back to the fundamental work 
by Gauss who introduced the least squares method for fitting a model to measured data 
corrupted by noise. The theory of estimation has continuously grown during the 20th 
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century in many disciplines. A full understanding of the estimator properties for the case 
when the predictor contains time delayed versions of both inputs and noisy outputs was 
clarified within the control community during the active era approximately during 1965-
1980. 
 
2. Models as Predictors  
 
The notion of a model is closely related to prediction, i.e., given certain knowledge 
predict the outcome of a process. In the area of automatic control a model is a 
mathematical operator which maps the space of input signals to the space of output 
signals. With the notation ( )u t  as the input signal, G as the operator representing the 
system and ( )y t  as the output we write 
 

( ) ( )y t u t=G  (1) 
 
This chapter will entirely focus on the special case when the operator G is a time 
invariant discrete time linear system. The relation (1) can then be expressed more 
explicitly. By introducing the impulse response sequence of the system as 

( ), 1, ,g k k = … ∞  we obtain 
 

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )k

k k
y t g k u t k g k q u t G q u t−

= =
= −∑ ∑� �

∞ ∞
 (2) 

 
The output at time t  is a linear combination of all past inputs. In (2) we also have 
introduced the time shift operator 1q− . The object ( )G q  is called the transfer function 
of the system model. For further discussion on transfer functions refer to (General 
Models of Dynamical Systems and Description of Continuous Linear Time-Invariant 
Systems in Time-Domain). The model (2) lacks a representation of disturbances and/or 
unmeasured inputs acting on the system and therefore also present in the output. A more 
complete model is illustrated in Figure 1 where a noise term ( )w t  is added.  
 

 
 

Figure 1: System setup. The input ( )u t  is assumed known and the noisy output ( )y t  is 
measured and is the sum of the deterministic part ( ) ( )G q u t  and the stochastic part 

( ) ( ) ( )w t H q e t=  where ( )e t  is unknown but assumed to have zero mean.. 
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The noise is modeled as ( ) ( ) ( )w t H q e t=  where ( )H q  is a linear transfer function and 
( )e t  is taken as a sequence of independent identically distributed (i.i.d.) random 

variables of zero mean and variance λ . The transfer function ( )H q  is used in order to 
include descriptions where the noise ( )w t  is correlated (or colored) in time. We further 

assume that ( )H q  is stable, inversely stable and monic. (Write 1
0 1( )H q h h q−= + +… . 

If 0 1h =  then ( )H q  is monic.) A transfer function 0( ) k
kkH q h q−==∑∞  is stable if the 

impulse response ( )h k  is absolutely summable, that is 0 kk h= <∑∞ ∞ . Putting the 
deterministic and stochastic parts together yields 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t G q u t w t G q u t H q e t= + = +   (3) 
 
See Chapters (Control of Stochastic Systems and Models of Stochastic Systems) for 
more related material on models of stochastic systems.  
 
Throughout the chapter we assume that ( )G q  is stable and the input ( )u t  is independent 
of the output ( )y t  and is not generated by output feedback by a closed loop control 
system. Identification under feedback conditions normally requires special care. 
Methods for the closed loop case can be found in (Prediction Error Method, 
Identification for Control and Frequency Domain System Identification).  
 
A simple reorganization of (3) to  
 

1( ) ( ) [ ( ) ( ) ( ( ) 1) ( )] ( )y t H q G q u t H q y t e t−= + − +   (4) 
 
reveals the structure of the one-step ahead predictor. Note that 

1( ( ) 1) ( ) ( )kkH q y t h y t k=− = −∑∞  (due to the monicity of ( )H q ) is only dependent on 
past outputs. As ( )e t  is unknown at time 1,t −  zero mean and independent, a natural 
predictor for ( )y t  is obtained by simply assuming ( ) 0e t =  
 

( )1ˆ( ) ( ) ( ) ( ) ( ) 1 ( )y t H q G q u t H q y t−= + −⎡ ⎤⎣ ⎦
Δ

  (5) 
 
Given a predictor the prediction errors are defined as ˆ( ) ( ) ( )t y t y tε = − . It can be shown 
that the prediction error produced by the predictor  ˆ( )y t  in (5) indeed has the lowest 
variance for all linear one-step ahead predictors for ( )y t  defined in (3). For further 
information about prediction models please refer to (Identification of Linear Systems in 
Time Domain and Prediction Error Method). 
 
2.1. Linearly Parameterized Predictors 
 
The aim of the system identification is to determine the unknown transfer function 

( )G q  and perhaps also ( )H q  from samples of the input and output signals. This task 
consists in two steps. First a model set is defined, e.g. by deciding on the model 
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order(s). In the second step the model parameters are determined by an estimation 
procedure. This chapter focuses on the second step, the estimation of the parameters. In 
order to accomplish this task we design a parameterized model structure of the predictor 
(5) and look for parameters which minimize the prediction errors. For some particular 
choices of model structures, this task is considerably simplified and the parameters can 
be solved for by analytical methods, e.g. the least squares and the instrumental variable 
methods. 
 
A range of different model structures emerges when describing the system transfer 
function ( )G q  and noise transfer function ( )H q  in various ways. An assumption that 
the impulse response of the system has a finite duration is for example very common in 
models of communication channels. This implies that 1

1( ) ( ) b
b

n
nG q B q b q b q−−= = + +…  

and if we also assume the noise transfer function is unity, i.e., ( ) 1H q = , we obtain the 
simple finite impulse response (FIR) model structure 
 

( ) ( ) ( ) ( )y t B q u t e t= +   (6) 
 
The predictor (5) associated with the FIR model is trivially given by  
 
ˆ( ) ( ) ( )y t B q u t=   (7) 

 
By introducing a vector of parameters 
 

1 2[ , , , ]
b

T
nb b bθ = …  

 
and a regression vector ( )tφ  
 

( ) ( 1), ( 2), , ( )T
bt u t u t u t nφ = − − −⎡ ⎤⎣ ⎦…   (8) 

 
the parameterized predictor can be written as a linear regression 
  
ˆ( ) ( )Ty t tθ = φ θ   (9) 

 
where the dependence on the parameters is made explicit in the notation of the 
predictor. 
 
Resonant mechanical structures have an infinite impulse response and are difficult to 
model using moderately sized FIR models. Transfer functions with poles (A transfer 
function ( )H z  has a pole at pz  if ( )H z  has a singularity at pz z= ) will be better to 
approximate such systems. Also if the structure is excited by unmeasured inputs 
regarded as noise, the noise model should also have a similar pole structure. If we let 
both the system and the noise transfer function share the same pole polynomials we 
obtain the ARX structure 
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( ) 1( ) ( ) ( )
( ) ( )

B qy t u t e t
A q A q

= +   with   
1

1

1
1

( ) 1

( )

a
a

b
b

n
n

n
n

A q a q a q

B q b q b q

−−

−−

= + + +

= + +

…

…
 (10) 

For a mechanical structure the poles, i.e. the roots of ( )A q , will contain the resonance 
frequencies and damping coefficients of the oscillatory modes of the structure. The 
name ARX stands for Auto Regressive with eXternal input. 
 
One prime advantage with the ARX structure becomes apparent if we consider the 
predictor (5) using the ARX structure of the models. This leads to the predictor 
 

[ ]
1 1

ˆ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
a bn n

T
k k

k k
y t a y t k b u t k A q y t B q u t t

= =
θ = − − + − = − + = φ θ∑ ∑  (11) 

 
where 
 

1 2 1 2

( ) ( 1), ( 2) , , ( ), ( 1), ( 2) , , ( )

, , , , , , ,
b a

T
b a

T
n n

t u t u t u t n y t y t y t n

b b b a a a

φ = − − − − − − − − −⎡ ⎤⎣ ⎦
⎡ ⎤θ = ⎣ ⎦

… …

… …
 (12) 

 
The predictor (11) is a linear function of the an  past outputs and the bn  past inputs and 
is also a linear function of the polynomial coefficients of the system. Hence, the 
predictor for an ARX model is a function of finite amount of past data. 
 
If only the system dynamics is of importance, it is then possible to neglect the exact 
form of the noise dynamics. It is then convenient to assume an ARX model of the form 
 

( ) ( ) ( ) ( ) ( )A q y t B q u t v t= +   (13) 
 
where the ARX equation error is given by ( ) ( ) ( ) ( ) ( ) ( )v t A q w t A q H q e t= = . If the 
simple ARX predictor given in (11) is used, the predictor clearly is not variance optimal 
since the true noise dynamics have been neglected. We will later also see that a special 
estimation technique must be employed to obtain consistent parameter estimates since 
the equation error ( )v t  in (13) is not white. 
 
A special case emerges when the system has no input. The output is then equal to the 
noise, ( ) ( ) ( )y t H q e t= . We will consider here only the autoregressive (AR) case with 
noise model ( ) 1/ ( )H q A q=  and prediction formula 
 

[ ]
1

ˆ( ) ( ) 1 ( ) ( )
an

k
k

y t a y t k A q y t
=

θ = − − = −∑   (14) 

 
Note that the AR case is simply the ARX case without the exogenous input ( )u t . 
 
The FIR, ARX and AR model structures share an important common feature. The one-
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step ahead predicted output can be written as a linear regression 
 
ˆ( ) ( )Ty t tθ = φ θ   (15) 

where the regression vector ( )tφ  contains only a finite amount of past measured data up 
to time 1t − . 
 
3. Estimating the Model Parameters 
 
System identification aims at finding a model based on samples of the input and output 
signals. An immediate question is how to determine the model parameters from data? 
This chapter deals with two particular techniques; the least squares method and the 
instrumental variable method. The motivations behind these can be drawn from a 
statistical point of view where noises and signals are assumed to be quasi-stationary. 
 
Assume we want to find a way to predict the output ( )y t  of system given knowledge of 
a set of variables, the regressors ( )tφ . If we constrain the prediction function to be 
linear function parameterized by a vector θ , it can be described as  
 
ˆ( ) ( )Ty t tθ = φ θ  

 
A rather natural way of finding out the best parameter vector θ  would be to minimize 
the size of the prediction error ˆ( ) ( )y t y t− θ  with respect to the parameters. A possible 
choice of characterizing this size is the variance of the prediction error. This leads to the 
minimum variance estimate 
 

{ }T 2
θ

θ̂ arg min E [ ( ) ( ) θ]MV y t t= −φ   (16) 

 
where E{}⋅  denotes expectation. However, in reality we only have access a finite set of 
data and the minimum variance criterion cannot be evaluated. Given N  pairs of data, 

1{ ( ), ( )}N
tu t y t = of data we instead form the sample estimate of the variance as  

 
22

1 1

1 1ˆ(θ) ( ) ( ,θ) ( ) ( ) θ
N N

T

t t
V y t y t y t t

N N= =
= − = −φ∑ ∑
Δ

 (17) 

 
and define the least square estimate (LSE) as  
 

θ
θ̂ arg min (θ)LS V=

Δ
  (18) 

 
Does the LSE θLS�  make sense? Clearly if we are looking for a linear function which 

can predict the output, the resulting predictor ˆ( θ ) ( ) θT
LS LSy t t= φ� �  is the one which, for 

the given data and regression vector, does the best job in a least squares sense. This is of 
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course true even if the predictor structure does not match how the original system 
generated the data. If the resulting predictor also will perform well on new data not used 
to determine θLS�  depends solely on the validity of the assumed model structure and on 
the statistical properties of the noise signal ( )v t . Under mild assumptions on the data the 
LS estimate will converge to the minimum variance solution (16) as the number of 
samples tends to infinity. We will also examine the conditions which ensure that as 
N →∞  we obtain  0θ θLS →�  where 0θ  is the true parameters of the system. 
 
A second motivation for the LS estimate is its close relation to the maximum-likelihood 
estimate. Assume the data generating system can be described by  
 

0( ) ( ) θ ( )Ty t t e t= φ +  
 
where ( )e t  is a sequence of i.i.d. random variables with zero mean drawn from a normal 
distribution. Minimizing the LS-criterion (θ)V  in (17) coincides with maximizing the 
parameterized likelihood function for the observed data. In Section 4 we will further 
analyze the LS estimate in some detail. 
 
- 
- 
- 
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