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Summary 
 
This chapter gives a short introduction to and survey of subspace identification 
algorithms. Deterministic, stochastic and combined deterministic-stochastic subspace 
identification algorithms are treated. These methods estimate state sequences directly 
from the given data, either explicitly or implicitly, through an orthogonal or oblique 
projection of the row spaces of certain block Hankel matrices of data into the row 
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spaces of other block Hankel matrices, followed by a singular value decomposition 
(SVD) to determine the order, the observability matrix and /or the state sequence. The 
extraction of the state space model is then achieved through the solution of a least 
squares problem. Each of these steps can be elegantly implemented using well-known 
numerical linear algebra algorithms such as the singular value decomposition and the 
QR decomposition. 
 
1. Introduction 
 
This Section contains a description of the central ideas of this chapter. First, in Section 
1.1, we describe state space models, which is the type of models that is delivered by 
subspace identification algorithms. In Section 1.2 we explain how subspace 
identification algorithms work. 
1.1. State Space Models 
 
Models in this chapter are lumped, discrete time, linear, time-invariant, state space 
models. From the number of epithets used, this might seem like a highly restricted class 
of models (especially the fact that they are linear), but, surprisingly enough, many 
industrial processes can be described very accurately by this type of models, especially 
locally in the neighborhood of a working point. Moreover, there is a large number of 
control system design tools available to build controllers for such systems and models. 
 
Mathematically, these models are described by the following set of difference 
equations: 
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E denotes the expected value operator and pqδ  the Kronecker delta. 
 
In this model, we have 
 

• vectors:  The vectors m
ku ∈R  and l

ky ∈R  are the observations at time 
instant k of respectively the m inputs and l outputs of the process. The vector 

n
kx ∈R  is the state vector of the process at discrete time instant k and 

contains the numerical values of n  states. l
kv ∈R  and n

kw ∈R  are 
unobserved vector signals, usually called the measurement, respectively 
process noise. It is assumed that they are zero mean, stationary, white noise 
vector sequences. (The Kronecker delta in (2) means 0pqδ =  if ,p q≠  and  
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1pqδ =  if .p q= ) The effect of the process kw  is different from that of 

:k kv w  as an input will have a dynamic effect on the state kx  and output ,ky  
while kv  only affects the output ky  directly and therefore is called a 
measurement noise. 

 

• matrices:  n nA ×∈R  is called the (dynamical) system matrix. It describes the 
dynamics of the system (as characterized by its eigenvalues). n mB ×∈R  is 
the input matrix, which represents the linear transformation by which the 
deterministic inputs influence the next state. l nC ×∈R  is the output matrix ,  
which  describes  how  the  internal   state  is   transferred   to  the  outside   
world   in  the observations .ky  The term with the matrix l mD ×∈R  is called 

the direct feedthrough term. The matrices ,n n n lQ S× ×∈ ∈R R  and l lR ×∈R  
are the covariance matrices of the noise sequences kw  and .kv  The block 
matrix in (2) is assumed to be positive definite, as is indicated by the 
inequality sign. The matrix pair { , }A C  is assumed to be observable, which 
implies that all modes in the system can be observed in the output ky and can 

thus be identified. The matrix pair 1 2{ ,[ ]}A B Q  is assumed to be 
controllable, which in its turn implies that all modes of the system can be 
excited by either the deterministic input ku  and/or the stochastic input .kw  

 
A graphical representation of the system can be found in Figure 1. 
 

 
 

Figure 1:  The (circled) vector signals ku  and ky  are available (observed) while ,k kv w  
are unknown disturbances. The symbol Δ  represents a delay. Note the inherent 

feedback via the matrix A (which represents the dynamics). Sensor or actual dynamics 
are completely contained in A too. It is assumed that ku  is available without 

measurement noise. 
 
We are now ready to state the main mathematical problem of this chapter. 
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1.2. The Basic Idea behind Subspace Identification Algorithms 
 
The goal of this Section is to provide a verbal description of the main principles on 
which subspace identification algorithms are based. The mathematical derivations will 
be elaborated on in the next sections. 
 
Subspace identification algorithms are based on concepts from system theory, 
(numerical) linear algebra and statistics. The main concepts in subspace identification 
algorithms are 
 

1. The state sequence of the dynamical system is determined first, directly from 
input/output observations, without knowing the model. That this is possible for 
the model class (1) is one of the main contributions of subspace algorithms, as 
compared to “classical” approaches that are based on an input-output 
framework. The difference is illustrated in Figure 2. So an important 
achievement of the research in subspace identification was to demonstrate how 
the Kalman filter states can be obtained directly from input-output data using 
linear algebra tools (QR and singular value decomposition) without knowing the 
mathematical model. An important consequence is that, once these states are 
known, the identification problem becomes a linear least squares problem in the 
unknown system matrices, and the process and measurement noise covariance 
matrices follow from the least squares residuals, as is easy to see from Eq. (1): 
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(3) 

 
The meaning of parameters i and j will become clear henceforth. 
 
Even though the state sequence can be determined explicitly, in most variants 
and implementations, this is not done explicitly but rather implicitly. Said in 
other words, the set of linear equations above can be solved ‘implicitly’ as will 
become clear below, without an explicit calculation of the state sequence itself. 
Of course, when needed, the state sequence can be computed explicitly. 
 
The two main steps that are taken in subspace algorithms are the following. 
 
(a) Determine the model order n and a state sequence 1ˆ ˆ ˆ, , ,i i i jx x x+ +…  (estimates 

are denoted by ⋅̂ ). They are typically found by first projecting row spaces of 

Given s  consecutive input and output observations 0 1, , ,su u −…  and 0 1, , .sy y −…  
Find an appropriate order n  and the system matrices , , , , , , .A B C D Q R S  
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data block Hankel matrices and then applying singular value decomposition 
(see Sections 4, 5, 6). 

 
(b) Solve a least squares problem to obtain the state space matrices: 
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where F⋅ denotes the Frobenius-norm of a matrix. The estimates of the noise 
covariance matrices follow from 

 l �
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where l l

1ˆ ˆ
kw k k kx Ax Bu+ρ = − −  and l lˆ ( , , 1)

kv k k ky Cx Du k i i jρ = − − = + −…  are the 

least squares residuals. 
 

2. Subspace system identification algorithms make full use of the well developed 
body of concepts and algorithms from numerical linear algebra.  Numerical 
robustness  is guaranteed because  of  

 

 
 

Figure 2:  Subspace identification aims at constructing state space models from input-
output data. The left hand side shows the subspace identification approach: first the 

(Kalman filter) states are estimated directly (either implicitly or explicitly) from input-
output data, then the system matrices can be obtained. The right hand side is the 

classical approach: first obtain the system matrices, then estimate the states. 
 

the well-understood algorithms, such as the QR-decomposition, the singular 
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value decomposition and its generalizations. Therefore, they are very well suited 
for large data sets ( )s →∞  and large scale systems ( , ,m l n large). Moreover, 
subspace algorithms are not iterative. Hence, there are no convergence 
problems. When carefully implemented, they are computationally very efficient, 
especially for large datasets (implementation details are however not contained 
in this survey). 
 

3. The conceptual straightforwardness of subspace identification algorithms 
translates into user-friendly software implementations. To give only one 
example: since there is no explicit need for parameterizations in the geometric 
framework of subspace identification, the user is not confronted with highly 
technical and theoretical issues such as canonical parameterizations. The number 
of user choices is greatly reduced when using subspace algorithms because we 
use full state space models and the only parameter to be specified by the user, is 
the order of the system, which can be determined by inspection of certain 
singular values. 

 
2. Notation 
 
In this section, we set some notation. In Section 2.1, we introduce the notation for the 
data block Hankel matrices and in Section 2.2 for the system related matrices. 
 
2.1. Block Hankel Matrices and State Sequences 
 
Block Hankel matrices with output and/or input data play an important role in subspace 
identification algorithms. These matrices can be easily constructed from the given input-
output data. Input block Hankel matrices are defined as 
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where: 
 

• The number of block rows ( )i  is a user-defined index which is large enough, i.e. 
it should at least be larger than the maximum order of the system one wants to 
identify. Note that, since each block row contains m (number of inputs) rows, the 
matrix 0 2 1iU − consists of 2mi rows. 

 
• The number of columns ( )j  is typically equal to 2 1,s i− +  which implies that all 

s available data samples are used. In any case, j should be larger than 2 1.i −  
Throughout this chapter, for statistical reasons, we will often assume that 

, .j s →∞  For deterministic (noiseless) models, i.e. where 0kv ≡  and 0,kw ≡  
this will however not be needed. 

 
• The subscripts of 0 2 1 0 1 0 2 1, , , ,i i i i iU U U U etc− − − …  denote the subscript of the 

first and last element of the first column in the block Hankel matrix. The 
subscript “p” stands for “past” and the subscript “f” for “future”. The matrices 

pU  (the past inputs) and fU  (the future inputs) are defined by splitting 0 2 1iU −  

in two equal parts of i  block rows. The matrices pU +  and fU −  on the other hand 
are defined by shifting the border between past and future one block row down.  
The superscript “+” stands for “add one block row” while the superscript “ − ” 
stands for “delete one block row”. 
 
They are defined as 0p iU U+ =  and 1 2 1.f i iU U−

+ −=  

 
The output block Hankel matrices 0 2 1, , , ,p f p fiY Y Y Y Y+ −

−  are defined in a similar way. 

 
State sequences play an important role in the derivation and interpretation of subspace 
identification algorithms. The state sequence iX  is defined as: 
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1 2 1
def ( ) ,n j

i i i i j i jX x x x x ×
+ + − + − ∈R…   (8) 

 
where the subscript i  denotes the subscript of the first element of the state sequence. 
 
2.2. Model Matrices 
 
Subspace identification algorithms make extensive use of the observability and of its 
structure. The extended ( )i n>  observability matrix iΓ  (where the subscript i  denotes 
the number of block rows) is defined as: 
 

2

1

def .li n
i

i

C
CA

CA

CA

×

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Γ ∈⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R
…

       (9) 

 
We assume the pair { , }A C  to be observable, which implies that the rank of iΓ  is equal 
to n. 
 
3. Geometric Tools 
 
In Section 3.1 through 3.2 we introduce the main geometric tools used to reveal some 
system characteristics. They are described from a linear algebra point of view, 
independently of the subspace identification framework we will be using in the next 
sections. 
 
In the following sections we assume that the matrices , andp j q j r jA B C× × ×∈ ∈ ∈R R R  
are given (they are dummy matrices in this section). We also assume that 

max( , , ),j p q r≥  which will always be the case in the identification algorithms. 
 
3.1. Orthogonal Projections 
 
The orthogonal projection of the row space of A  into the row space of B  is denoted by 
A B  and its matrix representation is  
 

†def ( ) ,T TA B AB BB B        (10) 
 
where †( )•  denotes the Moore-Penrose Pseudo-inverse of the matrix (• ). A B⊥  is the 

projection of the row space of A  into ,B⊥  the orthogonal complement of the row space 

of ,B  for which we have †( ( ) ).T
jA B A A B A I B BB B⊥ = − = −  The projections BΠ  

and 
B⊥Π  decompose a matrix A  into two matrices, the row spaces of which are 
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orthogonal: 
 

.B B
A A A ⊥= Π + Π         (11) 

 
The matrix representations of these projections can be easily computed via the LQ 

decomposition of ,
B
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 which is the numerical matrix version of the Gram-Schmidt 

orthogonalization procedure.  
 

Let A and B be matrices of full row rank and let the LQ decomposition of 
B
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 be 

denoted by 
 

11 1

21 22 2

0
,

T
T

T

L QB
LQ

A L L Q

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
      (12) 

 
where ( ) ( )p q p qL + × +∈R  is lower triangular, with 11 21 22, ,q q p q p pL L L× × ×∈ ∈ ∈R R R  

and ( )j p qQ × +∈R  is orthogonal, i.e. ( )1
1 2

2

0
.

0

T
qT

T
q

IQ
Q Q Q Q

IQ

⎛ ⎞ ⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 Then, the  

matrix representations of the orthogonal projections can be written as 
 

21 1 ,TA B L Q=         (13) 
 

22 2 .TA B L Q⊥ =         (14) 
 
- 
- 
- 
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