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Summary 
 
Many applications make use of series expansion techniques for characterizing general 
functions in terms of a predefined set of prototype or basis functions. A well-known 
example is the Fourier series representation which employs sine and cosine functions of 
different frequency as the basis functions. 
 
More recently, the wavelet representation has emerged as a powerful alternative to 
existing series expansion techniques. This method is based on a fundamental concept of 
representing arbitrary functions in terms of the translations and dilations of a single 
localized small wave or ’wavelet’ function, which decays rapidly towards zero. Unlike 
the Fourier basis functions, the wavelet basis functions are localized both in space and in 
frequency so the wavelet analysis can provide time-frequency information about a 
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function which in many practical situations is more pertinent than the standard Fourier 
analysis. Wavelets also provide a powerful approximation tool that can be used to 
synthesize economically, using a minimal number of basis elements, functions which are 
difficult to approximate by other methods. 
 
This work presents the use of wavelet representations in nonlinear system identification. 
In particular it is shown how to identify NARMAX models, from data, implemented as a 
superposition of wavelet basis functions. Two specific implementations one based on 
radial wavelets and the other based on B-spline wavelet multiresolution approximations 
are presented. 
 
1. Introduction 
 
The use of linear models in the study of dynamical systems, in the real world is limited by 
the fact that more often than not the dynamical system of interest turns out to be 
nonlinear. 
 
Linear models cannot reproduce a wide range of dynamical behavior that results from 
non-linear interactions. In such situations, it is essential to use nonlinear models to 
represent such behavior. 
 
In many cases, the only practical way to obtain a model of a nonlinear dynamical system 
is directly from experimental input/output data recorded from the system. This process is 
known as system identification. 
 
A fundamental problem in nonlinear system identification is how to infer a good 
nonlinear model from observations given the fact that the number of possible nonlinear 
interactions is theoretically infinite. As someone once said, ‘a nonlinear function can be 
nonlinear in so many ways’. How can we decide which nonlinear functions to use when 
we start to write down the equations that describe a nonlinear process? 
 
The solution is to implement the nonlinear model using specific types of functions, such 
as polynomials for example, which can approximate arbitrary nonlinear interactions that 
occur in practical dynamical systems. The approximation properties of each class of 
functions will determine in practice the range of nonlinear interactions that can be 
modeled. 
 
In practice, certain types of functions can efficiently approximate only certain nonlinear 
relationships. In some cases, a given class of functions may not be rich enough to 
guarantee that a model, that describes the observed nonlinear behavior with good 
accuracy, can be build using only functions from that class. In other cases the functions 
chosen to implement the model are more complex than required and can lead to a model 
that, although it fits the data very well, does not describe the dynamical process. 
 
It follows that in system identification an ideal approximation technique should allow 
maximum flexibility in adapting the complexity of the model structure to match, as 
closely as possible, the underlying nonlinear interactions involved in each particular 
situation. In this context, recent developments in the way arbitrary functions are 
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represented as a superposition of elementary or basis functions provide an excellent 
framework for implementing such adaptive approximation structures. 
 
Today, many applications of mathematics make use of methods for relating functions or 
empirically derived variables to a set of basis functions that have important general 
properties. In the last decade the popular Taylor and Fourier series were complemented 
by a wealth of alternative series expansions developed in order to represent, analyze and 
characterize general functions. 
 
Among these new methods none has had such an impact and spurred so much interest as 
the wavelet representation, which bridged the gap between various fields of research such 
as approximation theory, signal and image processing. 
 
At the heart of the method is the concept of representing an arbitrary function in terms of 
dilations and translations of a single wave-like function known as the “mother” wavelet 
function. In general, the wavelet approximation of a function is very economical, that is, 
only a small number of wavelets are enough to approximate a function with good 
accuracy.  
 
Even functions that are notoriously difficult to approximate can be synthesized efficiently 
using this approach. This makes wavelet functions well suited in nonlinear system 
identification. It is important however to find among the many wavelet classes available, 
those that are best suited for this task. 
 
This article focuses on two wavelet based model implementations, which have been 
successfully employed in practice, namely the wavelet network and the B-spline wavelet 
multiresolution model. Special emphasis is placed on the model structure selection 
algorithms. The problem of selecting the wavelet model terms is very important, given 
the fact that the “atomic” decomposition of the nonlinear function in terms of wavelet 
basis functions, leads to a very large number of candidate model terms.  
 
In the absence of a proper structure selection strategy, the resulting identified models will 
have far too many parameters for the model to be practical. In this case, one of the most 
important features associated with the wavelet representations, that is the ability to 
describe functions and distributions using a minimal number of wavelet coefficients, is 
not exploited. 
 
 The article highlights the importance of developing efficient algorithms that can be used 
to assemble piece by piece, like a puzzle, based on a set or library of wavelet basis 
functions, the simplest model that can describe the system dynamics with good accuracy. 
 
2. Wavelets - A Brief Overview 
 
Although the first appearance of wavelets can be traced back to as early as the beginning 
of the century it was the work of Morlet and Grossman who initiated the resurgence of 
wavelet theory in the context of seismic signal processing. They described a function 
characterized by regularity, localization and an oscillatory nature as a “wavelet”. Their 
work triggered an explosion in the number of publications concerning theoretical and 
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practical treatment of wavelets. 
 
The wavelet transform is founded on the simple notion of approximation of a signal via 
dilations and translations of a single function ( )tψ  referred to as the mother wavelet 
which allows a signal to be viewed at various scales and different positions in time. Since 
the notion of scale is linked directly to frequency, wavelets represent in fact a 
time-frequency analysis tool. 
 
Unlike the sinusoidal wave functions used in Fourier theory, the wavelet function is a 
small wave centered around a given position in time t∗ (or space) with a fast decay to zero 
away from the center. Because of this, wavelets need to be shifted (translated) in order to 
cover the whole real line. The translation of a wavelet function ( )tψ  with an amount b 
can be written as ( )t b−ψ .  
 
At the same time, in the frequency domain, ˆ ( )ψ ω , which represents the Fourier transform 
of ψ , is also centered around a given frequency *ω  with a fast decay to zero away from 
the center frequency.  
 
The wavelet function is said to generate a window function which is characterized both in 
the time and frequency domain by its ’center’ and ’width’ (i.e. the length of the interval 
over which the function values are significant). 
 
Similar to Fourier theory, where the sinusoidal waves involved have different frequencies, 
wavelets of different frequencies have to be considered in order to cover the frequency 
space.  
 
This can be achieved by introducing a dilation parameter a, which controls how fast the 
wavelet oscillates.  
 
This is equivalent to a translation of ˆ ( )ψ ω  in the frequency space, so that the new center 
frequency becomes * aω .  
 
Moreover, as shown in Eq. (1), while a translation in time preserves the shape of the 
time-frequency window, scaling alters it so that for large center-frequency * aω  the 
window narrows in the time-domain and widens in the frequency-domain. The opposite 
happens at small center-frequencies. 
 
It follows that a single function ( )tψ  can be used to generate a whole family of functions 
parameterized in terms of the dilation (scaling) and translation parameters 
 

 1 2
, | |a b

t ba
a

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

ψ ψ  (1) 

 
which act as time-frequency windows, and can be used to extract spectral information 
from a signal at specific locations. 
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Figure1: Time-frequency windows generated by 11, ( )b tψ  and 2, ( )a b tψ  where 
2 10 1,a b b< < <  

 
The abundance of useful features enjoyed by the wavelet transform has led to its 
application in a wide range of disciplines such as mathematics, physics, signal processing, 
approximation theory and numerical analysis. This is also a direct consequence of the fact 
that the development of wavelet theory follows independent contributions from various 
fields of research, which eventually led to the establishment of a unified theory. 
 
Similar to Fourier theory, there are two main components of wavelet theory namely the 
Continuous Wavelet Transform and the Wavelet Series. Unlike in the Fourier case 
however, here the two components are closely related. In practice, for a given application, 
it is often crucial to select the most appropriate of the different forms of the wavelet 
transforms. 
 
The wavelet transform can be understood as an alternative way of investigating functions, 
which have previously been studied only by means of Fourier series and integrals. 
However, the two theories, rather than competing, are complementary since there are 
applications where wavelet analysis is better suited than Fourier analysis and vice versa. 
In signal analysis applications, for example, transients are easily recognizable as 
localized bursts of energy at small scales using the wavelet transform. 
 
In function approximation applications the time-frequency localization property of the 
wavelet function means that isolated discontinuities can be approximated with good 
accuracy by refining the wavelet approximation structure locally rather than globally, 
leading to more economical representations involving fewer parameters.  
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The ability of wavelets to encode signals efficiently, in terms of a small number of 
wavelet coefficients, has led to the development of many wavelet-based signal and image 
compression algorithms. 
 
In estimation applications, a smooth signal can be recovered from noisy measurements by 
rejecting noise components above the scale at which the underlying signal has significant 
energy. 
 
2.1 The Continuous Wavelet Transform 
 
The Continuous Wavelet Transform (CWT) maps a continuous square integrable function 
of one variable f(t) to a continuous function of two variables a and b that correspond to 
scale and location. 
 
A square integrable function is a function for which the following integral has finite value 
 

 2| ( ) |f x dx
∞

−∞

< ∞∫  (2) 

 
The Continuous Wavelet Transform (CWT) relative to some basic wavelet called the 
mother wavelet ( )xψ  is defined for a square integrable function f(x) as 

 
def

, ( )( )( , ) ( ) a b xW f a b f x dx
∞

=

−∞
∫ψ

ψ  (3) 

where a, b ∈ , a ≠ 0 and 
 

 
def 1 2

, ( ) | |a b
x bx a

a
−

=
−⎛ ⎞

⎜ ⎟
⎝ ⎠

ψ ψ  (4) 

 
Equation (3) states that ( )W fψ  (a, b) is the correlation of f (x) with a shifted (by b) and 
scaled (by a) version of ψ . From Figure 1 it is clear that for any given a and b, the CWT 
gives local information of an analog signal within a time-frequency window whose 
dimensions and location depend continuously on a and b. 
 
The transform defined in Eq. (3) is invertible subject to a mild restriction imposed on ψ . 
The restriction is that 
 

 C d
∞

−∞

= < ∞∫
2

ψ

| ψ(ω)|
ω

ω
 (5) 

 
where ψ̂  is the Fourier Transform of ψ . Equation (5) guarantees that f (x) can be 
recovered from its wavelet transform using the following inversion or synthesis formula 
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 , 2

1( ) ( )( , ) ( )b a
daf x W f b a x db

C a

∞ ∞

−∞ −∞

⎡ ⎤= ⎣ ⎦∫ ∫ ψ
ψ

ψ  (6) 

 
The expression given in Eq. (6) can be interpreted in two different ways. In one way it 
shows how to reconstruct f from the corresponding integral representation ( )W fψ (a, b). 
On the other hand, the equation gives a recipe to write any arbitrary f(x) as a superposition 
of wavelet functions , ( )b a xψ . 
 
Whenever ψ  decays sufficiently fast, that is for example when the following integrals are 
finite 
 

 ( )x x dx
∞

−∞

< ∞∫ ψ  (7) 

 

 ( )d
∞

−∞

< ∞∫ ωψ ω ω  (8) 

 
the invertibility condition Eq. (5) is equivalent to 
  

( ) 0x dx
∞

−∞

=∫ ψ  (9) 

 
In this case, the basic wavelet is said to provide a time-frequency window that is, the 
wavelet function is localized in both the time and the frequency domain. This feature 
makes the wavelet transform a very suitable time-frequency representation.  
 
There exist other, older and useful time-frequency representations such as the Short-Time 
Fourier Transform (STFT) or the Gabor transform.  
 
The difference between the time-frequency analysis provided by the wavelet transform 
and the previous methods is that CWT uses short time-windows (narrower wavelets) at 
high frequency and long time-windows (wider wavelets) at low frequencies, as opposed 
to the constant time-frequency window used in STFT.  
 
This makes the wavelet transform particularly suitable for analyzing signals or functions 
with both very high and very low frequency components. 
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Figure 2: Examples of wavelets: The 5-th derivative of the Gaussian (a) for a = 1 and (c) 
for a = 0.5; (b), (d) The corresponding Fourier transforms 

 
An example of a wavelet that is well localized in both the physical and the Fourier domain 
is the Nth derivative of a Gaussian 
 

 
2

2
( ) ( 1)

N
N N x

N

dx
edx
−

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
ψ  (10) 

 
Figures 2a and 2b display the mother wavelet defined in equation Eq. (10) for N = 5, 

5 ( )xψ along with 5
0.5,0 ( )xψ  and the corresponding Fourier counterparts 5ˆ ( )ψ ω  and 

5
0.5,0 ( )ψ ω . It can be seen how the time localization of the wavelet function 5

,a bψ  increases 
with decreasing scale at the expense of the frequency localization of the corresponding 
Fourier transformed function 5

,
ˆ

a bψ . The tradeoff between time and frequency localization 
is a distinguishing feature of the wavelet transform which can be exploited in many 
applications.  
 
The number of applications of CWT is large, ranging from signal processing and data 
compression to the analysis of intermittence in turbulence and the physiology of sight. In 
system identification, the continuous wavelet transform has formed the basis for the 
development of a neural network type architecture, which will be described in detail in a 
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later section. 
 
2.2 Wavelet Series 
 
In many practical applications, the Continuous Wavelet Transform is discretized in the 
scaling and dilation parameters for computational efficiency. By discretizing both the 
dilation and translation parameter it is possible to define the Wavelet Series. A wavelet 
series provides an alternative series representation, to the classical Fourier series for 
example, for square integrable functions. 
 
- 
- 
- 
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