
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. VI - Linear-Model Case – John Norton 

©Encyclopedia of Life Support Systems (EOLSS) 

LINEAR-MODEL CASE 
 
Norton, John 
Department of Electronic, Electrical and Computer Engineering, School of 
Engineering, University of Birmingham, UK 
 
Keywords: Bound-based identification, set-membership identification, parameter 
bounding, unknown but bounded uncertainty, bounded noise, regression models, 
parameter estimation, elliposids, polytopes, algorithms. 
 
Contents 
 
1. Bounding a linear model: the simplest case 
2. Computation of the exact feasible set 
3. Approximate parameter bounding 
3.1. Limited-complexity polytopes 
3.2. Ellipsoidal  bounding 
3.3. Box bounding 
3.4. Parallelotope bounding 
3.5. Hybrid algorithms 
4. Parameter bounding with unknown output-error bound 
5. Parameter bounding with uncertain explanatory-variables vector 
6. Clashes and outliers 
7. Parameter bounds for time-varying linear systems 
7.1. Heuristic recursive bounding of time-varying parameters using ellipsoids 
7.2. Bounding of time-varying parameters treated as state variables 
8. Conclusions 
Bibliography 
Biographical Sketch 
 
Summary 
 
This article presents a selection of techniques for computation of bounds on the 
parameters of a system model that is linear in the parameters and has specified bounds 
on the errors between the model output and observations of the system output. Exact 
and approximate parameter bounds are considered, and important special situations are 
described: parameter bounding when the output-error bound or the explanatory 
variables are uncertain, when the data clash with the model specification, and when the 
parameters vary with time. 
 
1. Bounding a linear model: the simplest case 
 
Bounding uses measurements from a system to reduce uncertainty in the unknowns in a 
model of the system. It aims to find the feasible set of all values of the unknowns that 
are consistent, in some precisely defined way, with all the measurements. First consider 
the simplest possible case, where  
 
• the unknowns are constant parameters in the model,  
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• the relation between the parameters and observations is linear  
• parameter values are consistent with the measurements if, for the same input values, 

they make the model output match the corresponding output observations to within a 
specified tolerance.  

 
The linear model 
 

T
k k ky e= +f θ  (1) 

 
relates the kth scalar observation ky ∈ℜ  to a vector n∈ℜθ of unknown parameters, 
through known kf . The model may or may not be dynamical. For a static system, kf  
might consist of simultaneous samples of n distinct system inputs, while for a dynamical 
system it might consist of  n successive samples of a single input leading up to time k, 
with the parameters in θ  comprising the unit-pulse response. [Note that the independent 
variable indexed by k need not be time, nor need the observations be at equal intervals 
in the independent variable. If, for instance, a vector of m output observations is taken at 
each point in time, we can treat the ith vector observation as  ( 1) 1  to i m imy y− + , with a 

different f  for each of the m output variables].  
 
At each k, we require the model-output error ke  to be between kε±  (symmetrical about 
zero, without loss of generality). Thus to be consistent with observation ky , θ  must 
satisfy  
 

   T T
k k k k k ky yε ε− ≤ , ≤ +f fθ θ  (2) 

 
Geometrically, (2) requires θ  to be in both of two half spaces, bounded by hyperplanes 
with common normal kf . That is, θ  must be in the strip 
 

{ }: T
k k k k k ky yε ε≡ − ≤ ≤ +fθ θS  (3) 

 
between two parallel hyperplanes 2 /k kε f  apart. To be consistent with a set of 

observations ,    1,2,...,ky k N= , the parameters must be in the intersection of N 
strips, as in Figure 1, so the feasible set for θ  is 
 

{ }
1

,     1 2
N

N k k
k

k = , ,...,N
=

≡ ∈ ≡ ∩θ : θP S S  (4) 

 
which is a polytope, convex and compact so long as n of the normals 

,   1,2,...,k k N=f  are linearly independent.  
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So far, the picture is very simple. The boundary of the feasible set consists of those 
segments of the 2N hyperplanes (2) for 1,2,...,k N=  which are active bounds. Often 
θ  is also subject to linear prior bounds, which are likely to come in parallel pairs, e.g. 
when each parameter can be assumed to be in a known range, confining θ  to a box. 
Any unpaired linear prior bound can be treated as having a partner distant enough to be 
inactive. Thus linear prior bounds do not alter the picture but merely increase the 
effective N. 

 
 

Figure 1.   Polytope feasible set with boundary- , formed by intersection of strips 
defined by hyperplane bounds due to three observations, for n = 2. 

 
The feasibility of any particular value of θ  can be tested simply by checking whether 
(2) is true for all the k’s; the smallest output-error tolerance kε  for which θ  remains 
feasible is just the largest  ke yielded by θ  in (1). However, explicit identification of 
the feasible set NP  may be difficult when N is large, even if n is quite small, because 
much computing may be necessary to establish which of the 2N hyperplane bounds are 
active as the faces of NP . The next two sections will address this problem. 
 
Several useful generalizations of the linear parameter-bounding problem so far outlined 
will be considered in later sections: allowing unknown kε , allowing the parameters θ  
to vary with k , dealing with uncertain kf , and coping with bad data. 
 
2. Computation of the exact feasible set 
 
Polytope NP  has at most 2N hyperplane faces, given by (2). They are conveniently 
rewritten as  
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2 1 2 1

2 2

1,2,...,  

T T
k k k k k

T T
k k k k k

y z

y z

k N

ε

ε
− − ⎫≤ + ≡ ⎪

⎬
≡ − ≤ − + ≡ ⎪⎭

=

h f

h f

θ ≡ θ

θ θ

 (5) 

 
Any one of them, say ,T

j jz≤h θ  is active if and only if it contains the extremal points 

of  NP  in the direction of jh . A linear programming solution maximizing T
jh θ  subject 

to (5) can check this. All the active bounds can be identified by at most 2N such LP 
solutions, each with up to 2 1N −  constraints. The LP computing load increases with N 
and sooner or later becomes excessive if new observations continue to arrive. Instead of 
recomputing the feasible set from scratch each time a new observation is received, it is 
more economical to update a list of the active bounds of 1N −P  to a list for NP  when 
observation N arrives, i.e. to compute the boundary of the feasible set recursively. 
Several closely related algorithms exist for recursive computation of P  (Broman and 
Shensa, 1986; Walter and Piet-Lahanier, 1989; Mo and Norton, 1990). They differ in 
what details of the polytope they store and update. A basic version will now be 
described. 
 
A non-minimal description of the polytope is stored, to economize in the computing 
effort required to update the description. It consists of a list of vertices and, for each 
vertex, two lists, of its supporting hyperplanes (those intersecting at it) and its adjacent 
vertices. To incorporate a new hyperplane bound T

j jz≤h θ  due to a new observation, 
the updating procedure is: 
 

• test each vertex iv to see whether it is cut off by the hyperplane, i.e., whether 
T
j i jz>h v  

• if all vertices are cut off, the feasible set becomes empty (no parameter values 
remain feasible) so updating stops 

• if no vertex is cut off, no updating is necessary: the new hyperplane is redundant 
• for each vertex iv  not cut off, test all vertices on its adjacent-vertex list to see 

which are cut off 
• for each pair of  adjacent vertices, iv  not cut off and lv  cut off, create a new 

vertex on the edge joining them, at (1 ) i lλλ= − +v v v  where  

( )

T
j i j

T
j i l

z
λ

−
=

−

h v

h v v
 

• create the supporting-hyperplane list for each new vertex, consisting of the new 
hyperplane and those hyperplanes common to the lists of vertices iv , lv  

• for retained vertices, update their adjacent-vertex lists by replacing cut-off 
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vertices by the corresponding new ones 
• for each new vertex v, create an adjacent-vertex list consisting of the retained 

vertex iv  and all new vertices which share at least 1n −  supporting 
hyperplanes with v. 

 
Often relatively few of the 2N hyperplanes contribute to the boundary of the feasible set, 
many being redundant. Even so, an excessive computing load is likely to be incurred, 
particularly if the number of dimensions is large, because the numbers of vertices and 
edges of the polytope may become very large as more observations arrive. At some 
point the exact feasible set can no longer be computed and we have to resort to an 
approximate version that is cheaper to update and less complicated to work with. The 
next section describes the most popular approximations. 
 
3. Approximate parameter bounding 
 
A number of algorithms to compute simpler approximations to the exact feasible set 
have been developed. They all employ outer-bounding approximations, conservative in 
the sense that no feasible value is excluded but some infeasible ones are included. All 
the approximations are of complexity independent of the number of observations 
processed. The approximating set may be a polytope with a fixed number of faces, an 
orthotope (box) with n mutually orthogonal pairs of parallel faces (Milanese and 
Belforte, 1982), a parallelotope with n generally non-orthogonal pairs of parallel faces 
(Chisci, Garulli and Zappa, 1996, Vicino and Zappa, 1996), or an ellipsoid (Schweppe, 
1968, Fogel and Huang, 1982). An ellipsoidal set is described by 
 

{ }1ˆ ˆ: ( ) ( ) 1T
k k k k

−≡ − − ≤Pθ θ θ θ θE  (6) 

 
where ˆ

kθ  is the centre and positive-definite matrix kP  describes the size and shape.  
 
Of these approximations, a box aligned with the coordinate axes has the simplest 
description (by 2n numbers) but is a poor fit if the feasible set is narrow in a direction 
not close to an axis direction; a box not aligned with the axes requires ( 3) / 2n n +  
numbers to specify it and can fit many convex, near-symmetrical sets well; an ellipsoid 
also requires ( 3) / 2n n +  numbers and also often fits convex, near-symmetrical sets 
well; a parallelotope is described by ( 1)n n +  numbers and is thus more complicated 
but can fit a somewhat wider range of sets well. The nature of the updating for each type 
of approximation is discussed below. Batch processing (all together) and recursive 
processing (one at a time) of the observations will be considered. In every case, the 
tightest computable bounds are required, giving the approximating object with, for 
instance, smallest volume. 
 
3.1. Limited-complexity polytopes 
 
A bounding polytope defined by a fixed, restricted number 1pn n≥ + of hyperplanes 
can be computed recursively using the algorithm given in Section 2, together with a 
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criterion for discarding one of the 1pn +  bounds in play once a new observation-
induced bound is added. To minimize the volume of the updated polytope, the volumes 
of the trial polytopes found by deleting each bound in turn can be compared, in 
principle. In practice, the volumes are easily computed for 1pn n= +  (i.e. updating a 

simplex) but heavy to compute for larger pn  (Lassere, 1983). Instead, Piet-Lahanier 
and Walter (1993, 1996) discard the bound farthest from the Chebyshev centre of the 
( 1pn + )-face polytope, while Broman and Shensa (1990), in a slightly different 
formulation, choose among new bounds cutting an existing polytope by maximizing the 
depth of the cut, as measured by the largest of the distances from the new bound to the 
excluded vertices. In both cases the computation is simple provided the vertices of the 
existing polytope have been recorded: each element of the Chebyshev centre is the mean 
of the extrema in the corresponding coordinate direction, and the distance of a point θ  

from T z=h θ  is /T z−h hθ .  

 
- 
- 
- 
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