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Summary 
 
In this paper, an overview of non-linear parameter bounding approaches, to solve a 
general parameter estimation problem under unknown-but-bounded uncertainty, is 
presented. The proposed algorithms are classified according to their leading principle, 
such as (i) intersection of feasible parameter sets determined by the measurement 
uncertainty bounds, (ii) encapsulation of the feasible parameter set by e.g., supporting 
hyperplanes, (iii) discrete approximation of the feasible parameter set by point estimates 
or a collection of e.g., boxes, ellipsoids, etc. (iv) projection of the measurement 
uncertainty set into the parameter space, and (v) development of algorithms for special 
model classes using specific information. The approaches will be illustrated by a simple 
exponential model with two parameters. 
 
1. Introduction 
 
During the last two decades a growing amount of literature on so-called set-membership 
identification or parameter-bounding approaches has become available (see Bound-
based Identification). The key problem in this bound-based identification is not to find a 
single vector with optimal parameter estimates, but a set of feasible parameter vectors 
that are consistent with a given model structure and data with bounded uncertainty. A 
bounded error characterization, as opposed to a statistical characterization in terms of 
mean, variances or probability distributions, is favored when the central limit theorem is 
inapplicable, such as in situations with small data sets or with heavily structured 
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(modeling) errors. If the error is ∞  bounded and the model is linear in the parameters 
this feasible set is a polytope, which complexity depends on the number of data and 
especially on the parameter dimensionality. See Linear-model Case for a further 
treatment of linear parameter bounding approaches. 
 
However, in addition to the linear case, in practice, many non-linear parameter 
estimation problems are encountered. In this chapter, solutions to this problem given 
bounded noise data are investigated and illuminated. 
 
In section 2, some definitions are given. On the basis of these definitions the estimation 
problem is formulated. The approaches to solve the non-linear bounded parameter 
estimation problem are presented in section 3. Then, in section 4, an illustrative example 
is presented and the results are discussed. Finally, in section 5 some concluding remarks 
are given. 
 
2. Definitions and notation 
 
Consider the following non-linear regression type of model 
 

( )ϑ= +y F e  (1) 
 
where N∈y  contains the observed output data, ( )ϑF  is a non-linear vector function 

mapping the unknown parameter vector mϑ ∈  into a noise-free model output ŷ . The 
information uncertainty vector e  is assumed to be bounded in a given norm. In what 
follows, it is assumed that it is bounded in the ∞  norm, so that 
 

ε∞ ≤e  (2) 
 
where ε  is a fixed positive number, and leading to the error set 
 

{ }: :N
e ε∞Ω = ∈ ≤e e  (3) 

 
Hence, a measurement uncertainty set (MUS), containing all possible output 
measurement vectors consistent with the observed output data and uncertainty 
characterization, is defined as 
 

{ }: :N
y ε∞Ω = ∈ − ≤y y y  (4) 

 
This set is a hypercube in N . Generally speaking, it is an ∞  norm ball in N . Let 
the set 
 

( ){ }: :m
ϑ ϑ ϑ ε

∞
Ω = ∈ − ≤y F  (5) 
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define the feasible parameter set. Then, the set-membership estimation problem is to 
characterize this feasible parameter set (FPS), which is consistent with the model (1), 
the data ( )y  and uncertainty characterization (2). 
 
For further analysis the image set, which is a p-dimensional variety in the N-
dimensional measurement space, is defined as follows: 
 

( ){ }: : ;N m
y ϑ ϑΩ = ∈ = ∈y y F } (6) 

 
The image set related to the FPS, also called the feasible model output set, is then 
defined as: 
 

( ){ }ˆ ˆ ˆ: : ;N
y y yϑϑ ϑΩ = ∈ = ∈Ω = Ω ∩Ωy y F  (7) 

 
Let us illustrate the introduced sets by a simple example with two measurement and two 
unknown parameters. Furthermore, the example will also show some of the specific 
estimation problems in nonlinear bound-based identification. 
 
Example 1 Suppose the relation ( )ϑF  is given by: ( )1 2( ) sin tϑ ϑ ϑ= +F , and the 

measurements are: ( ) ( )1 1; 1 1.0t y= =  and ( ) ( )2 3; 2 0.5t y= =  with error bound 

0.5ε = . Hence, when only one measurement at ( )1t  is available yΩ  is an interval, in 

this case [ ]0.5, 1.5 , and ϑΩ  is an unbounded set that is only bounded by a pair of 

bounds: ( )1 2sin 0.5ϑ ϑ+ =  and ( )1 2sin 1.5ϑ ϑ+ =  (see Figure 1). Consequently, the 
image set is equal to the real axis and the feasible model output set is equal to the 
measurement uncertainty set. 
 
When the second measurement at ( )2t  becomes available yΩ  becomes a square with 

center [ ]1 0.5 T  and edges with length one in the measurement space. Consequently, in 
the parameter space another pair of bounds is added, which together with the bounds 
related to the first measurement define an exact solution to the parameter bounding 
estimation problem. Notice from Figure 1 that ϑΩ  (dotted regions) becomes a non-
connected set with non-convex subsets. Furthermore prior knowledge restricts 1ϑ  to the 

[ ]0, 2π  interval. The image set is equal to 

[ ]{ }2
11 2 12 2 11 12 2: ; , 1, 1 ,Tϑ ϑ ϑ ϑ ϑ ϑ ϑ∈ = + + ∈ − ∈⎡ ⎤⎣ ⎦y y , a strip in 2 , and again 

the feasible model output set is equal to the MUS (see Figure 2). However, when a third 
measurement becomes available the feasible model output set will generally not be 
equal to the MUS and the image set becomes a two-dimensional variety in 3 . 
 
In what follows, the feasible parameter set, or a subset of it, is assumed to be connected 
albeit non-convex. 
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Figure 1. Graphical representation of the feasible parameter set (dotted area) after two 
measurements. 

 

 
 

Figure 2. Graphical representation of the MUS ( ŷ= Ω ) and image set ( ŷΩ ) after two 
measurements. 
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3. Classification of non-linear parameter bounding algorithms 
 
In order to obtain some insight in the way parameter bounding estimation problems, as 
defined in the previous section, are solved a classification according to the leading 
principle is useful and is presented in the following. This classification holds for general 
models nonlinear in the parameters and for data with point-wise ( ∞ -norm) bounded 
noise. 
 
3.1. Intersection 
 
As shown in the example, it appears that at sample instant t  each measurement with its 
associated noise bounds defines two bounding surfaces in the parameter space, which 
bound a feasible parameter region ( )( )tϑΩ . Hence, each parameter vector situated 
within this region is consistent with the uncertain measurement. Consequently, the 
intersection of these individual regions will provide an exact characterization of ϑΩ , 
that is 
 

( )1: N
t tϑ ϑ=Ω = ∩ Ω  (8) 

 
These intersection algorithms have never been fully developed due to the large 
complexity of the problem, except for cases where 3m ≤  so that the problem can be 
solved graphically, as in the previous example.A first attempt to characterize ϑΩ  could 
be via the determination of vertices or edges. For the determination of a vertex of ϑΩ , 
for instance, at least m  sharp conditions have to be detected. Once these sharp 
conditions have been found, and this is the most difficult part, the vertex can be found 
by solving the parameter values from m  nonlinear algebraic equations. However, one 
should realize that in the nonlinear case, when the feasible parameter set is not a 
polytope, it does not suffice to determine only the vertices nor the edges for a full 
characterization of the set. 
 
- 
- 
- 
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