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Summary 
 
This paper introduces two fundamental concepts for the understanding of linear systems 
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dynamics and for the analysis and design of control systems, which are those of poles 
and zeros. The poles of a system are crucial characteristics of the internal system 
dynamics, and characterize system free response, stability and general aspects of the 
performance of a system.  The poles of a system are affected by the different 
compensation schemes, such as state, output feedback and dynamic feedback 
compensation and thus they are the subject of many design methodologies aiming at 
shaping the internal system dynamics.   The current introduction on the characterization 
of poles and their properties provides the basis for many control designs.   The notion of 
zeros is more complex. Zeros express the interaction between internal dynamics and the 
effort to control and observe the system and they are thus products of overall system 
design, that apart from process synthesis involves selection of actuation and 
measurement schemes for the system.  The significance of zeros is mainly due to that 
they remain invariant under a large set of compensation schemes, in addition to the fact 
that they define limits of what can be achieved under compensation.  This makes zeros 
crucial for design, since they are part of those factors characterizing the potential of a 
given system to achieve certain design objectives under compensation.  The invariance 
of zeros implies that their design is an issue that has to be addressed outside the 
traditional control design; this requires understanding of zero formation process and 
involves early design stages mechanisms such as process instrumentation.  Poles and 
zeros are conceptually inverse concepts (resonances, anti-resonances) and such 
mechanisms are highlighted throughout the paper.  The emphasis in this article is to 
provide an overview of the fundamentals of the two notions, examine them from many 
different perspectives and provide links between them. 
 
1. Introduction 
 
The concepts of pole, and zero have emerged as the key tools of the classical methods 
of Nyquist-Bode and root locus for the analysis and design of linear, single-input, single 
–output (SISO) feedback systems. The development of the state space S(A,B,C,D) 
description, transfer function G(s) description, and complex variable, (g(s), algebraic 
function) methods for linear multivariable systems has led to a variety of definitions for 
the zeros and poles in the multivariable case and the emergence of many new properties. 
The variety and diversity in the definitions for the zeros and poles is largely due to the 
differences between alternative system representations the difference in approaches 
used, the objectives and types of problems they have to serve. 
 
Loosely speaking, multivariable poles and zeros are resonant and anti-resonant 
frequencies respectively, that is to say they are frequencies whose transmission explodes 
with time, or whose transmission is completely blocked. This, of course, is intuitively 
appealing since it forms a natural extension of the definitions given for the scalar case, 
where the poles and zeros of a scalar transfer function are defined as the values of the 
complex frequency s for which the transfer function gain becomes ∞, or 0 
correspondingly. The inversion of roles of poles and zeros suggested by their classical 
complex analysis definition motivates the dynamic (in terms of trajectories) properties 
of zeros. The physical problem used to define multivariable zeros is the “output 
zeroing“ problem, which is the problem of defining appropriate non-zero input 
exponential signal vectors and initial conditions which result in identically zero output.  
Such a problem is the dual of the “zero input” problem defining poles, which is the 
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problem of defining appropriate initial conditions, such that with zero input the output is 
a nonzero exponential vector signal. Those two physical problems emphasize the duality 
of the roles of poles and zeros. 
 
Apart from its natural dynamic appeal such definitions for poles and zeros have the 
additional advantages that they reveal the geometric dimension of such concepts as well 
as their link with fundamental structural invariants of the system. The poles-eigenvalues 
have a well-defined geometry introduced by the eigenvectors and the corresponding 
spaces (the A-invariant spaces of the state space).  Similarly, the geometry of zeros is 
linked to generalized eigenvalue-eigenvector problems and corresponding spaces (types 
of (A, B)- invariant spaces). The Jordan form of the state matrix reveals the invariant 
structure of poles in the state space set-up.  The Smith form, and in some more detail the 
Kronecker form, of the state space system matrix introduce the zero structure of the 
state space models; for transfer function models the pole zero structure is introduced by 
the Smith-McMillan form.  Such links reveal the poles as invariants of the alternative 
system representations under a variety of representation and feedback transformations. 
The strong invariance of zeros (large set of transformations) makes them critical 
structural characteristics, which strongly influence the potential of systems to achieve 
performance improvements under compensation. 
 
The dynamic characterization of zeros leads to algebraic characterizations, which reveal 
them as by-products of the interaction of the internal dynamics and the model, input, 
output structure. This is contrary to the pole characterization, which shows that they 
express the internal dynamics and as these are viewed through the input, output system 
structure. Such observations lead to that zero design is a task associated with overall 
selection of inputs, outputs and thus belongs to the earlier system design stage of 
process instrumentation. In the paper we consider both finite and infinite zeros and 
examine them in both state space and transfer function context. The relationships 
between the corresponding notions for state space and transfer function models are 
revealing interesting links to the fundamental system properties of controllability and 
observability. 
 
The above classes of zeros are characterized by the property of invariance under 
appropriate transformations. Not all definitions of zeros, however, possess all the above 
invariance properties. The algebraic function approach used to generalise Nyquist and 
Root Locus ideas to the multivariable case introduces an alternative definition of zeros 
and poles, which do not have all the invariance properties. The relationships between 
these different classes of zeros are examined and their significance to control problems 
is briefly discussed. 
 
Every square system (same number of input and outputs) has zeros (finite and/or 
infinite); however, non-square systems generally do not have zeros and this is an 
important difference with the poles that exist independent from input, output 
dimensionalities. Closing feedback loops creates square systems and this involves 
creation of zeros; such phenomena are within the area of designing zeros and the 
mechanisms for zero formation are examined. Although non-square systems generically 
have no zeros, they have “almost zeros”; this extended notion is also introduced, 
express “almost pole-zero cancellations” and it is shown that in a number of cases 
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behaves like the exact notion. The significance of zeros for control problems is finally 
discussed. 
 
Poles and zeros are fundamental system concepts with dynamic, algebraic, geometric, 
feedback and computational aspects. The paper provides an overview of the key aspects 
and a detailed account of the material that may be found in the cited references. 
 
2. System Representations and their Classification 
 
Linear time invariant multivariable systems are represented in the time domain by state 
variable model 
 
x A x u= +B�  
 
S(A,B,C,D) (1) 
 
y C x Du= +  

 
where x is an n-vector  of the state variables, u is an p-vector of inputs and y is an m-
vector outputs.  A, B, C, D are respectively nxn, nxp, mxn, mxp matrices.  The above 
description may be represented in an autonomous or implicit form as: 
 

( ), :
⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Δ Δ Δ Δ

x x
I O O A B O

S Φ Ω u u
O O O C D I

y y

Φ ξ Ω ξ

�
�
�

�

 (2) 

 
where Φ, Ω  are the coefficient matrices and  ξ = [xt, ut, yt]t is the composite vector, or 
implicit vector of the state space description.  The vector ξ contains the state, input and 
output vectors and makes no distinction between them.  S(Φ, Ω ) description belongs to 
the general class of generalized autonomous differential descriptions. 
 
S(F,G):  F z G z=�  (3) 
 
where F, G are rxk matrices and z is a k-vector.  The above system is characterized by 
the matrix pencil pF-G, where p /d dtΔ  denotes the derivative operator; pF-G 
completely characterize the state space description and it is referred to as implicit system 
pencil. 
 
An alternative matrix pencil form for the state space description is obtained by taking 
Laplace transforms of (1) which lead to the s-domain description. 
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( ) (0) ( ) ( )
( ) ( ) ( )

s x s x A x s Bu s
y s C x s Du s
− = +

= +

� � �
� � �

 

 
where x� (s), u� (s), y� (s) denote the Laplace transforms of  x(t), u(t), y(t) vectors 
respectively and x(0) the  initial value of x(t).  We may express the above in a matrix 
form as 
 

( ) (0)
,

( ) ( )

( )

sI A B x s x
C D u s y s

sI A B
P s

C D

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

�
� �

 (4) 

 
and the matrix coefficient P(s) is a matrix pencil entirely characterizing the state space 
model and it is known as the Rosenbrock System Matrix Pencil.  The input output, or 
transfer function model is described by 
y� (s) = G(s) u� (s) (5) 

 
where G(s) is an mxp rational matrix.  The transfer function may also be described in a 
matrix fraction description form as 
 
G(s) = Nr(s) Dr(s)-1 = D A  (s)-1 N A  (s) (6) 
 
where Nr(s), N A (s) are the mxp right, left polynomial matrix numerators respectively 
and  Dr(s), D A (s) are the pxp, mxm polynomial matrix denominators correspondingly.  
It will be assumed that Dr(s), N r (s) are right coprime and D A (s), N A (s) are left coprime 
(see polynomial and Matrix Fraction descriptions).  Using (5) and the factorization (6) 
we can readily obtain the following description 
 
D A (s) y� (s) = N A (s) u� (s) (7) 
 
and by introducing the vector h� (s) = D A (s)-1 u� (s) the description 
 
y� (s) = Nr(s) h� (s), u� (s) = Dr(s) h� (s) (8) 

 
The above two lead to the following input output type representations for the system 
 

[ ]

( )
[ ( ), ( )] 0,

( )

( ) ( ), ( )

y s
D s N s

u s

T s D s N s

⎡ ⎤
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=

A A

A A A

�
�  (9) 
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The first, based on T ( )sA , is referred to as Kernel input-output description, whereas the 
second based on T ( )r s  as a parametric input-output description. The matrices T ( )sA , 
T ( )r s  based on coprime MFDs will be called left-, right- composite matrices. 
 
3. Background on Polynomial Matrices and Matrix Pencils 
 
The study of zero structure of linear systems represented by state space, or transfer 
function models heavily relies on the theory of polynomial matrices (see Polynomial 
and Matrix Fraction Description) and matrix pencils (see Canonical Forms of State 
Space Models); here we review some of the fundamentals of their structure and 
introduce some useful notation. We consider matrices T(s) of dimension qxr with 
elements from the field of rational functions R(s), or the ring of polynomials R[s]; such 
matrices are called respectively rational, polynomial.  The rank of T(s) over R(s) is 
denoted by ρ = rank {T(s)} and will be called the normal rank of T(s).  T(s) may be 
viewed as a function of the complex variable s and thus for some s = z, rank {T(s)} = ρz 
< ρ; such values s =z are called zeros of T(s) and ρz   is called the local rank of T(s).  
The structure of zeros of T(s) is linked to study of certain form of equivalence defined 
on such matrices, which reveals the zeros as roots of invariant polynomials.   
 
Let T1(s), T2(s) be q x r polynomial matrices.  These matrices are called R[s]-uni-
modular equivalent, or simply R[s]-equivalent, if there exist polynomial matrices U A (s) 
Ur(s) of dimension qxq, rxr respectively with the property |Ur(s)| = c1 ≠ 0, |U A (s)|=c2 ≠ 0 
(|⋅| denotes determinant) and called R[s]-uni-modular, such that:  
 
T1(s) = U A (s) T2(s) Ur(s) (11) 
 
The above relation introduces an equivalence and for any matrix T(s) we have an 
equivalence class and associated invariants which are described by the following result. 
 
Smith Form Theorem: If T(s) is a q x r polynomial matrix with normal rank ρ ≤ min 
(q, r) there exist uni-modular matrices U A (s), Ur(s) such that 
 

U A (s) T(s) Ur(s) =

1( )

( )

f s

f sρ

Ο⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ο Ο⎣ ⎦

%
%  = S(s) (12) 
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where S(s) is qxr polynomial matrix f1(s),…, fρ(s) are uniquely defined and 
f1(s)/f2(s)/…/fρ(s) denotes the successive divisibility (i.e., f1(s) divides f2(s) etc). 
 
The polynomials fi(s) are called invariant polynomials of T(s) and the set {fi(s), 
i=1,…,ρ} is a complete invariant under R[s]-equivalence.  The roots of fi(s) (including 
multiplicities) define finite zeros of T(s).  The structure of these zeros (multiplicities 
and groupings) is defined by factorising the fi(s) into irreducible factors over the real, or 
complex numbers; for every zero z we define the set of z-elementary divisors by 
grouping all factors with root at z.   The set of elementary divisors (for all zeros) is also 
a complete invariant under R[s]-equivalence.  Note that although the Smith form under 
R[s]-equivalence defines the finite zero structure (finite frequencies), it does not convey 
any information on the structure at infinity; an alternative form is required and will be 
considered in a later section. 
 
With a polynomial, or rational matrix T(s) we may associate two important rational 
vector spaces (vector spaces of rational vectors and with scalars the rational functions 
R(s)). These are: 
 
Nr (T) = {x(s): T(s) x(s) = 0, x(s)  r x 1 vectors} (13) 
N A (T) = {yt(s): yt(s) T(s) = 0, y(s)t 1 x q vectors} 
 
Nr(T), N A (T) are called respectively right-, left-rational vector spaces, dimNr(T)=r-ρ 
dimN A (T)=q-ρ and with such spaces we can always define polynomial bases. If X(s) is 
an r x (r ρ)−  polynomial basis for Nr(T), or of any rational vector space X with dim 
X = r - ρ, then it is called least degree if it has no zeros.  A polynomial basis X(s) = 
[x1(s),…,x r-ρ(s)] with column degrees {d1,…,d r-ρ} is called least complexity, if Σ di = δ 
(X); note that δ(X) denotes the degree of X(s), defined as the maximal of the degrees of 
all maximal order minors of X(s).  A least degree and least complexity polynomial basis 
of Nr (T) is called a minimal basis, the ordered set of its degrees {d1,..,dr-ρ} are called 
right minimal indices and δr(T) = Σ di is the right-order of T(s).  The notion of left 
minimal indices and left order are defined similarly on N A (T).  Note that the sets of 
minimal indices are invariants of the corresponding rational vector spaces (but not 
complete). 
 
A special case of a polynomial matrix is that of a matrix pencil sF-G, where F,G are qxr 
real (or complex) matrices and s is an independent complex variable taking values on 
the compactified complex plane (that includes the point at infinity).  For such matrices 
we define the notion of strict equivalence in the following way: Two pencils sF-G, s F ′  
– G′  of dimension qxr are strict equivalent, if there exist real matrices Q, R of 
dimension qxq, rxr respectively such that  
 
s F ′  – G′  = Q (sF-G) R,    |Q|, |R| , ≠ 0 (14) 
 
The above introduces the notion of strict equivalence of matrix pencils and the 
equivalence classes are characterized by a set of invariants that will be defined 
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subsequently.  Pencils may be represented in a homogenous form as s F ′ - ŝ G′  where 
s, ŝ  are independent complex variables.  Frequencies on the compactified complex 
plane are represented as ordered pairs (α,β), where at least one of the α, β is ≠ 0.  Pairs 
(α,β): β ≠ 0 correspond to finite frequencies.  With the homogeneous pencil sF- ŝ G we 
associate the single variable pencils sF – G, sF- ŝ G.  The sets of invariants that may be 
defined are: 
 
Strict Equivalence Invariants of Matrix Pencils. 
 
Elementary Divisors: The Smith form of the homogeneous pencil sF- ŝ G defines a set 
of elementary divisors of the following type: sp, (s- α ŝ )τ, ŝ q.  The set of elementary 
divisors sp, ( ŝ -α)τ, are called finite elementary divisors (fed) of sF – G, whereas those 
of the ŝ q type are called infinite elementary divisors (ied) of sF – G. 
 
Minimal Indices: A matrix pencil sF–G, where at least one of Nr{sF–G} or N A {sF-G} 
are non trivial ( 0≠ ) are called singular, otherwise they are regular. If Nr{sF–G} 
{ 0≠ }, then the minimal indices of this space are denoted Ic (F, G) = {εi, i=1,…, μ} and 
are referred to as column minimal indices (cmi) of the pencil. Similarly, if N A  {sF – G} 
≠ {0} then Ir (F, G) = {ηj, j=1,..., ν} and are referred to as row minimal indices (rmi). 
 
This set of invariants is complete for the strict equivalence of matrix pencils, that is they 
uniquely characterize the strict equivalence class of a matrix pencil.  There is a uniquely 
defined element by the invariants referred to as Kronecker canonical form. 
 
Kronecker Canonical Form of a matrix Pencil: Consider a matrix pencil sF – G and 
assume that its Kronecker invariants are: elementary divisors of the type: {(s-α)τ 
,…; ŝ q} column minimal indices: {ε1 =…= εt = 0,  εj  > 0, j = t+1, …μ}, row minimal 
indices: {η1 =…= ησ = 0  ηi, > 0,  i = σ + 1,…,ν}.   There always exists a pair of strict 
equivalence transformations Q, R such that 
 
Q (sF- G) R = block diag { Oσ, t;…Lε(s) ,..,Lη(s),…; s Fw – Gw} 
 
Lε(s) = s [Iε 0] – [0, Iε] :  εx (ε+1) block 
 

Lη(s) = s 
0

0

I
I

η

η

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 : (η+ 1) x η block (15) 

 
sFw – Gw = block . diag {sI-J(a); … sHq – I q…} 
 
where J(a) is the τx τ Jordan block associated with (s-α)τ and Hq is a qxq nilpotent 
block (1s on the first super diagonal and the rest zero). 
 
4. Finite Poles and Zeros of State Space Models: Dynamics and their Geometry 
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4.1. Eigenvalues, Eigenvectors and Free Rectilinear Motions. 
 
For a single input, single output (SISO) system represented by a rational transfer 
function g(s) where g(s) = n(s)/d(s) and n(s), d(s) are coprime polynomials with 
deg{n(s)}=r and deg {d(s)}  = n we define as finite poles the roots of d(s) and as finite 
zeros the zeros of n(s).  If r< n we say that g(s) has an infinite zero of order n – r, and if 
r > n then g(s) has a infinite pole with order n – r. Finite and infinite poles have the 
property that the gain of the transfer function becomes unbounded (tends to infinity) and 
finite and infinite zeros are those frequencies for which the gain vanishes.  In this sense, 
the notion of poles and zeros are dual since the first characterizes resonance and the 
second anti-resonances.  It is this basic property that motivates a number of the 
definitions and problems that relate to multivariable poles and zeros. 
 
For a state space model the internal natural dynamics are defined by the zero input 
response (u(t) = 0), which in turn is characterized by the eigenvalues and eigenvectors 
of the state matrix A (see System Description in Time Domain), which determine the 
solution space of the autonomous system.  Using ( , )S Φ Ω description for u(s)≡0 we 
get the zero input differential description. 

( ) ( )
( ) :

( ) ( )
t t
t t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I O x A 0 x
S H,Θ

O O y C I u
�
�

 (16) 

 
which of course is equivalent to 
 
x� (t) = A x (t),   y = C x(t) (17) 
 
Definition 1: We define as poles of the state space model the eigenvalues of A and as 
pole directions the corresponding eigenvectors. 
 
If (λ, u) is a pair of an eigenvalue and eigenvector of A, then for every initial condition 
x(0) = cu (c constant) the corresponding solution of  S(H, Θ) is 
 
x(t) = exp (λt) cu,   y(t) = exp (λt)  Cu (18) 
 
which are λ exponential trajectories in the state and output spaces along the constant 
direction   xλ, = u and yλ = Cu Such straight line exponential motions are frequently 
called rectilinear motions and xλ, yλ are called state pole and output pole directions 
correspondingly. The fundamental operator describing the pole structure is the pencil 

( , )S H Θ  defined from the description (1), or in a reduced form the pencil 
 
W(s) = sI – A (19) 
 
which is called the state pole pencil. The eigenstructure of A is defined by its Jordan 
form (see Canonical Forms for State Space Descriptions) and this may be defined 
algebraically by the elementary divisors of the Smith form of W(s). The presence of 
elementary divisors with degree higher than one implies the existence of Jordan blocks 
for the corresponding eigenvalues. The dynamic characterization of such multiple 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. VII – Multivariable Poles and Zeros - Karcanias, Nicos 

©Encyclopedia of Life Support Systems (EOLSS) 

eigenvalues is in terms of generalized rectilinear motions (involving terms of the type 
exp ( ) , 1,2....).it t iλ =  
 
The pole-zero duality motivates the definition of the output zeroing problem, that is 
investigation the type of solutions of the system for which the output is identically zero 
(the output now is zero instead of the input for the case of pole).   When y(t) ≡ 0 the 
S(Φ, Ω) description is reduced to the system 
 

( ) ( )
( , ) :

( ) ( )
I O x t A B x t

S
O O u t C D u t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Γ Δ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 (20) 

 
the solutions of which describe the zero dynamics of the original system.  The 
fundamental pencil of S(Γ, Δ) is the Rosenbrock system matrix pencil and its structure 
describe the zero structure of the system. The dynamic characterization of the zero 
structure benefits by extending first the notion of free rectilinear motion to that of the 
forced rectilinear motion. 
 
- 
- 
- 
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