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Summary 
 
Modeling physical systems usually results in complex high-order dynamic models. It is 
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often desirable to replace (approximate) these models by simpler models with reduced 
order. In this process it is important to design the reduced model so as to capture the 
important properties of the original high-order model. This chapter describes some 
procedures that are available for the model reduction of linear time-invariant systems. 
 
1. What is Model Reduction? 
 
The description of a dynamic physical system by a set of differential (or difference) 
equation is a very useful tool in science. These equations, refereed here as a 
mathematical model, can be obtained from basic physical principles or as a result of 
experiments. A measure of the “complexity” of the system model is the number of first 
order equations used to describe it. This number is often referred as the order of the 
model. Models with elevated order are able to describe very complex phenomena. 
Consequently, models with high order may be required in order to provide an accurate 
description of a dynamic system. For instance, models with an infinite number of 
differential equations often appear in several fields. To name one, the behaviour of 
materials based on continuum physics is often described by partial differential equations 
or by an infinite number or ordinary differential equations. 
 
If the capacity of a model to accurately describe a system seems to increase with the 
order of the model, in practice, models with low orders are required in many situations. 
In some cases, the amount of information contained in a complex model may obfuscate 
simple, insightful behaviors, which can be better captured and explored by a model with 
low order. In cases such as control design and filtering, where the design procedures 
might be computationally very demanding, limited computational resources certainly 
benefit from low order models. These examples justify the need to develop procedures 
that are able to approximate complex high order models by generating adequate reduced 
order models.  As a result, some degree of detailing will be permanently lost in the 
reduced order model. The differences between the dynamics of the high order model 
and the obtained low order model ( the unmodeled  dynamics) can be often taken into 
account in the low order model as a noise,  which can be handled using stochastic 
process methods. In any case, the model reduction procedures might be flexible enough 
to let the user indicate the essential behaviors that need to be captured for its 
application. 

 

 
 

Figure 1: Single Component Model Reduction 
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Figure 2: Multi-Component Model Reduction 
 
1.1. Single Component Model Reduction  
 
Given a dynamic system model G of usually high order n, a model reduction method is a 
procedure that yields some approximated model Gr of order rn n< . The quality of the 
approximation is usually evaluated by looking at the model reduction error,  that is, the 
signal obtained as the difference between the outputs of the original system and the 
outputs of the reduced order model driven by the same input signal. That arrangement is 
depicted in Figure 1. With respect to this figure, the single component model reduction 
problem can then be loosely stated as follows: 
 
Given a system G, choose a procedure that yields a reduced order model Gr so that the 
model reduction error is small. 
 
1.2. Multi-Component Model Reduction  
 
Quite often model reduction procedures might be applied to one component of a system 
while the other component to which it is connected remain the same. Two examples of 
such occasion are given. Figure 2 (a) characterizes two components of a system 
interconnected in series. As an illustration, if this system represents a spacecraft, 
component G1 might represent a solar panel while component G2 could be the body of 
the spacecraft. The solar array and the body of the spacecraft might be manufactured by 
different companies and it would be useful to know how to write contracts so that the 
two companies can manufacture products with component dynamic properties such that 
the connections of the two components produce system dynamic properties that meet 
stringent specifications. The contracts must also characterize through the reduced order 
models G1r and G2r the accuracy required of the models of each component when 
measured from the system of connected components. Notice that weighted single-
component model reduction problems are defined by fixing component G1 (for input 
weighting) or component G2 (for output weighting). Several weighted model reduction 
procedures are available in the literature. 
 
Of course, one can have more complex arrangements of components than the simple 
example of Figure 2(a). For instance, in Figure 2 (b), a second example of multi-
component model reduction involves feedback. In a typical controlled system, 
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component G1 is usually the plant and component G2 is the controller. Both plant and 
controller might be subject to order reduction, where the reduced order models are 
represented in the picture by G1r and G2r. 
 
The general multi-component model reduction problem that includes all the special 
cases mentioned above can be loosely stated as follows 
 
Given N system components , 1,...,i i N=G  and an interconnection architecture (as in 
Figures 1-2 or other), chose procedures for each component that yield reduced order 
models , 1,...,ir i N=G  so that the overall system error (characterized by e in Figure 1-2) 
is small. 
 
It is important to note that model reduction methods that make the single-component 
model reduction error small for some component in the system do not necessarily yield 
small errors in an interconnected architecture. Conversely, a given reduced order model 
of a single component might produce unbounded single-component error and small 
multi-component error. In other words, the architecture of components tends to have a 
major impact on errors and on the selection of adequate model reduction procedures. 
One consequence of this fact in the context of control synthesis is that the determination 
of the model of the plant (in this case also affected by the model reduction procedure) 
and the design of the control law are not independent problems. The recognition of this 
fact (see the references for examples) has led to a large research effort devoted to the 
integration of the disciplines of model identification and control design. 
 
1.3. The Quality of the Reduced Order Model 
 
Whenever the system G and Gr can be interpreted as operators, the norm of the 
difference between G and the reduced order model Gr may be useful measure of the size 
of the model reduction error. In the statements of both single- and multi-component 
model reduction problems, the statement that the model reduction error should be kept 
small can be quantified through the scalar r−G G . If such objective is accomplished, it 
is expected that the error signal e resulting from the connections depicted in Figures 1 
and 2 be small for input signals u in some well defined class. 
 
Quantities other than norms can also be used in model reduction. Indeed, given a model 
for a physical system, it is usually possible (and sometimes very useful) to characterize 
it in terms of its response to certain input signals. For instance, a linear system model 
can be completely characterized by its impulsive response, and a number of moments 
(derivatives) of the impulse response evaluated at a given instant might capture 
important features of the original model. Hence, matching certain properties constitute 
an alternative model reduction criterion than keeping norms small. In fact, given a 
physical plant, it is not even necessary to have a complete model in hand to be able to 
perform model reduction (or identification), since the response of the system to properly 
generated inputs might be evaluated experimentally. Therefore, a reduced order model 
can be designed (identified) to match certain frequency or time response properties. 
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1.4. Characterization of the Single-Component Model Reduction Error  
 
Most parts of this chapter will focus on the single-component model reduction problem. 
This problem is the most elementary model reduction problem and yet displays the 
essential mathematical concepts encountered in the more complex multi-component 
model reduction problem. 
 
It will be assumed that G is a linear, continuous-time and time-invariant model of order 
n < ∞  described by the set of equations 
 

( ) ( ) ( ), (0) 0x t Ax t Bu t x= + =  (1) 
 

( ) ( ) ( )y t Cx t Du t= + , (2) 
 
where the ( ) nx t ∈  is the state, ( ) mu t ∈  is the input and ( ) qy t ∈  is the system 
output. For simplicity, the dependence of these vectors with respect to the independent 
variable t will be omitted whenever possible. References to the state-space realization 
(1-2) will frequently appear denoted by the quadruple of matrices (A, B, C, D). 
 
The reduced order model rG  to be determined has the same structure as G, that is, it is a 
linear, continuous-time and time-invariant model described by 
 

, (0) 0r r r r rx A x B u x= + =  (3) 
 

r r r ry C x D u= + , (4) 
 
where the rn

rx ∈  is the reduced order state and q
ry ∈  is the output of the reduced 

order model. 
 
In order to emphasize the fact that these systems are linear, they will be henceforth 
denoted by ( )sG  and ( )r sG , respectively. Where the complex variable s  alludes to the 
possibility of computing a Laplace transform (frequency-domain) representation of 
systems (1-2) and (3-4). 
 
The connection of ( )sG  and  ( )r sG  as in Figure 1 produces the model reduction error 
signal : re y y= − . The relation between the common input signal u  and e  can be 
described by defining the augmented state 
 

:
r

x
x

x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (5) 

 
so that the connection of  the system ( )sG  and ( )r sG  as in Figure 1 produces the linear 
time-invariant system 
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, (0) 0x x u x= + =A B  (6) 
 
e x u= +C D   (7) 
 
defined with the following matrices 
 

0
: , : , : [ ], :

0 r r
r r

A B
C C D D

A B
⎡ ⎤ ⎡ ⎤

= = = − = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A B C D  (8) 

 
The transfer function from the input u  to the model reduction error signal e  in the 
error system (6-8) is denoted by ( )sE . Notice that ( ) ( ) ( )rs s s= −G GE . 
 
2. Linear System Properties 
 
This section introduces several concepts and properties associated with linear systems 
that are of interest of the model reduction problem. It intends to summarize some 
important results that will be used in the model reduction methods to be described in 
Sections 3 and 4. (See Description and Classification, System Characteristics) 
 
2.1. Input-Output Transfer Function 
 
Given an arbitrary input signal ( )u t , the value of the output signal ( )y t  of the linear 
system (1-2) can be calculated by the convolution integral 
 

0
( ) ( ) ( )y t g t u dτ τ τ

∞
= −∫         (9) 

 
where ( )g t  is a function that describes the response of system (1-2) to independent 
impulsive inputs at all input channels, that is, the linear system impulse response. That 
relation can be equivalently characterized in somewhat simpler form 
 

( ) ( ) ( )s s s= GY U ,         (10) 
 
where (s), (s)Y U  and ( )sG  denote the Laplace transform of, respectively, the output 
y(t), the input u(t) and the impulse response g(t). In particular, it can be shown that, for 
the linear system (1-2), the impulse response g(t) and its associated transfer function 

( )sG  are given by 
 

( ) : ( ),Atg t e B D tδ= +C  1( ) : ( ) .s sI A B D−= − +G C      (11) 
 
The transfer function ( )sG  is a rational function of the complex variable s and provides 
a frequency-domain description of the input-output behavior of the system (1-2). 
 
From (11), more than one realization (A, B, C, D) of a linear system can produce the 
same impulse response g(t) and transfer function ( )sG . That is, different system 
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realizations can produce the same input-output behavior. In particular, all linear systems 
whose coordinates are related by 
 

1,x Tz z T x−= = .         (12) 
 
where the square matrix T is nonsingular, share the same input-output transfer function. 
Such systems are said to be related by a similarity transformation which is completely 
characterized by matrix T. Notice that the transformed system produced by (12) has the 
state-space representation 
 

1 1 , (0) 0z T ATz T Bu z− −= + =        (13) 
 

,y CTz Du= +          (14) 
 
and that 
 

1 1 1 1( ) ( )( ) ( ) ( ) ( )T s CT sI T AT T B D C sI A B D s− − − −= − + = − + =G G   (15) 
which is indeed independent of the choice of similarity transformation matrix T. 
 
2.2 Controllability and Observability 
 
The following concepts play an important role in the analysis of linear systems. 
Definition 1 Given the pair of matrices (A, B) where n nA ×∈  and n mB ×∈  the 
following statements are equivalent: 
 
a) (A, B) is controllable, 
 
b) There exists no scalar λ ∈  and no vector 0nv∈ ≠  such that 
 

( ) 0, 0v I A v Bλ∗ ∗− = = ,        (16) 
 
c) The controllability matrix 
 

1
c : ... nW B AB A B−⎡ ⎤= ⎣ ⎦         (17) 

 
has rank n. 
 
Definition 2 Given the pair of matrices (A, C) where n nA ×∈  and r nC ×∈ the 
following statements are equivalent: 
 
a) (A,C) is observable, 
 
b) There exists no scalar λ ∈  and no vector 0nv∈ ≠  such that 
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( ) 0, 0I A v Cvλ − = = ,        (18 ) 
 
c) The observability matrix 
 

o

1

:

n

C
CA

W

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (19) 

 
has rank n. 
 
By extension, a realization (A, B, C, D) is said to be controllable if the pair (A, B) is 
controllable and observable if the pair (A, C) is observable. 
 
For asymptotically stable systems, controllability and observability can be equivalently 
checked by solving the Lyapunov equations 
 

c c 0T TAP P A BB+ + = ,        (20) 
 

o o 0T TA P P A C C+ + = .        (21) 
 
The solutions cP  and oP  are called, respectively, controllability and observability 
Grammians. The following lemmas are standard. 
 
Lemma 1 The controllability Grammian cP  is positive definite if, and only if, matrix A 
is asymptotically stable and (A, B) is controllable. 
 
Lemma 2 The observability Grammian oP  is positive definite if, and only if, matrix A is 
asymptotically stable and (A, C) is observable. 
 
It is worth noticing that the Grammians are not realization independent since 
 

1
c c o o, :T T
T TP T P T P T P T− −= = .       (22) 

 
However, the product of the Grammians, that is, 
 

1
c o c oT TP P T P P T−=          (23) 

 
possesses invariant eigenvalues. 
 
2.3. Frequency Moments and Markov Parameters 
 
Assume that the transfer function ( )sG  is strictly proper (D=0) and analytic on the 
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imaginary axis. Its Taylor power series expansion around S j= ω  provides 
 

1

0
( ) ( ) ( ) ( )i

i
i

s C sI A B M j S j
∞

−

=
= − = ω − ω∑G ,     (24) 

 
where  
 

( 1)( ) : ( ) , 0,1,...i
iM j C j I A B i− +ω = ω − =       (25) 

 
The matrices ( ),0iM jω ≤ ω < ∞ , are known as low frequency moments of the transfer 
function ( )sG . The high frequency moments 
 

( ) : lim ( ) , 0,1,...,i
i iM j M j CA B i

ω→∞
∞ = ω = =       (26) 

 
are known as Markov parameters. In single input systems, the Markov parameters can 
be given a physical interpretation by applying an unitary impulse at the input channel. 
Using (9-11), such input produces the output 
 

( )
0

( ) ( )A t Aty t Ce B d Ce Bτ δ τ τ
∞ −= =∫        (27) 

 
Therefore, Markov parameters are associated with the ith derivative (time moment) of 
the impulse response at instant zero 
 

0

( ) ( ), 0,1,...
i

ii
t

d y t M j i
dt =

= ∞ =        (28) 

 
Notice that the frequency moments are input-output properties and should remain 
invariant under a similarity transformation. Indeed, the low frequency moments (25) are 
such that 
 

1 ( 1)

( 1)

( ) ( )( ) ( )

( ) ( )

i
i T

i
i

M j CT j I T AT T B

C j I A B M j

− − +

− −

ω = ω − − =

ω − = ω
     (29) 

 
for all 0,1,...i =  The same pattern can be used to shown that the Markov parameters are 
also invariant. 
 
2.4. Output Correlation and Power Moments 
 
Another quantity related to the input-output behavior of a linear system is the 
deterministic output correlation for impulsive inputs (white noise inputs in the 
stochastic case). Assume that the linear model (1-2) is asymptotically stable and strictly 
proper (D=0). The output correlation for impulsive inputs is defined by 
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0
1

( ) ( ) ( )
Tm

i i

i
R t y t y dτ τ τ

∞

=
= +∑∫ ,       (30) 

 
where ( ), 1,...,iy t i m=  denotes the output of the system due to an impulse applied at 
the ith input channel. It can be shown that (30) can be computed as 
 

c( ) At TR t Ce P C= ,         (31)  
 
where cP is the controllability Grammian, i.e., the positive semidefinite solution of the 
Lyapunov equation (20). Following Section 2.3, the output covariance (31) can be 
Laplace transformed and expanded in Fourier series 
 

1
c

0
( ) ( ) ( ) ( )T i

i
i

s C sI A P C R j s j
∞

−

=
= − = ω − ω∑R .     (32) 

 
The matrices  
 

( 1)
c( ) ( ) , 0,1,...i T

iR j C j I A P C i− +ω = ω − =       (33) 
 
are known as the low frequency power moments. The high frequency moments 
 

c( ) : lim ( ) , 0,1,...i T
i iR j R j CA P C i

ω→∞
∞ = ω = = ,     (34) 

 
are called covariance parameters. 
 
The same reasoning used to show that the frequency moments and Markov parameters 
are independent of state-space realizations can be used to show that the power moments 

( ), 0,1,...,iR j iω =  are also invariant under a similarity transformation. 
 
- 
- 
- 
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