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Summary 
 
In any engineering context, it is common practice to represent physical systems by 
mathematical models. Clearly, this representation is not exact. The discrepancy between 
the physical system and the mathematical model is due to two main sources: i) the lack 
of information on the structure or the behavior of the physical system; ii) the need for a 
simple model in order to apply available analysis and design techniques.  
 
Such a discrepancy, although unknown, must be modeled in a more or less accurate way 
in order to account for it in the design of the control law. In this chapter an overview of 
the most used approaches to uncertainty modeling is provided. Several unstructured and 
structured uncertainty models for both input-output and state-space settings are 
presented. The properties of these models in control design problems involving 
robustness issues are also discussed.   
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1. Introduction 
 
When modeling physical systems for control purposes, it is necessary to provide model 
descriptions that capture the main features of the system behavior and are 
mathematically tractable at the same time. An extremely accurate model of a physical 
process may turn out to be unsuitable for application of the available analysis and 
design techniques. By contrast, an over-simplified model, which misses significant 
information on the system structure, may lead to unacceptable design performance.  
 
A careful balance between capturing the true behavior of the physical system and 
generating mathematically tractable models requires a great effort from the control 
designer. A standard way is to assume a simplified model as the nominal system. The 
discrepancy between the system and the adopted nominal model is usually represented 
as a perturbation on the nominal model. The resulting model, which is therefore 
composed of the nominal one and the perturbation, is usually referred to as the 
uncertain model or model set. For example, an infinite-dimensional system is usually 
represented by a finite-dimensional approximation as the nominal model, and a 
perturbation accounting for the neglected dynamics.  
 
In order to obtain a satisfactory control design, it is mandatory that the control system 
performs well, not only on the adopted nominal model, but also on the actual physical 
process. This leads directly to the requirement of control design robustness, which 
demands that satisfactory performance is achieved for the uncertain model, i.e., the 
nominal model and the class of possible perturbations.  
 
Two approaches are commonly used to describe the uncertainty involved in the physical 
system description: i) unstructured; ii) structured. Roughly speaking, the unstructured 
uncertainty representation is used to describe unmodeled or difficult to model dynamics 
and it is usually given as a bound on some measure of the error signal between system 
and nominal model outputs for a chosen class of input signals. The structured 
uncertainty is represented by an element (e.g. a finite dimensional vector or an operator) 
in some pre-specified uncertainty set of a suitable space. For example, in highly 
structured (or parametric) uncertainty description, the uncertain elements may be the 
coefficients of a transfer function, or the components of system matrices in a state-space 
realization.  
 
After introducing the employed definitions and notation in Section 2, the main features 
of the two approaches to describe uncertainty are outlined in Section 3, by focusing on 
an input-output setting. Section 4 summarizes the most popular unstructured uncertainty 
models employed for modeling feedback control systems, also illustrating the related 
sources of system uncertainty. More structured uncertainty models are introduced in 
Section 5, where a standard model for uncertain control systems is presented. Section 6 
is devoted to highly structured, parametric uncertainty models. Finally, state-space 
models are discussed in Section 7.  
 
2. Notation and Definitions 
 
In this section, the basic material required for the representation of uncertainty models is 
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introduced.  
 
Vector and matrix norms are defined in the usual way. In particular, the 2-norm of a 

vector nv R∈  is equal to 2
1

n
ii v

=∑ , while the 2-norm of matrix A  is given by the 

maximum singular value of A , denoted by [ ]Aσ .  
 
Linear time-invariant dynamic systems are addressed via the associated real rational 
transfer function matrices. Figure 2 shows a generic multi-input multi-output (MIMO) 
system, with input signal ( ) mu t R∈  and output signal ( ) py t R∈ . 
 

 
 

Figure 1: System G  with input u  and output y . 
 
The corresponding p m×  transfer function matrix is denoted by 1( ) ( ) ( )G s N s D s−= , 
where N  and D  are polynomial matrices in the complex variable s , and ( )G s  is the 

Laplace transform of the system impulse response ( ) p mg t R ×∈  satisfying 

0
( ) ( ) ( )y t g t u dτ τ τ

∞
= −∫ . When 1m p= = , the system is said single-input single-output 

(SISO) and its transfer function ( )( )
( )

N sG s
D s

=  is a rational function of s .  

 
In order to evaluate the performance of a control system, it is customary to quantify the 
size of the involved signals. This is usually done by means of suitable signal norms. For 
a signal ( ) mu t R∈ , norms that frequently arise in control systems are:  

-  the 2L  norm (or energy norm)  
 

2
2 0

1
|| || ( )

m

i
i

u u t dt
∞

=

⎛ ⎞
= ;⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫  

 
-  the L∞  norm  
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1
|| || sup max ( )ii …mt
u u t∞ = , ,

= | | .  

 
For a scalar signal, the 2L  norm represents the amount of energy associated with the 
signal, while the L∞  norm is the maximum magnitude attained by the signal.  
 
A standard way to assess the performance of a control system is to look at the size of the 
output signal, once the size of one or more input signals (commands and/or 
disturbances) is fixed. If the system G  is considered as an operator from the input space 
to the output space, the achievable performance of the system can be measured 
according to the induced norm of G , defined as  
 

0

|| |||| || sup
|| ||u

GuG
u≠

= .         (1) 

 
Depending on the norms used in (1) for signals u  and y Gu= , different system induced 
norms are obtained. 
 
Let ( )G s  be a matrix transfer function with poles in the open left half plane, and ( )ijg t  
be the entry ( )i j,  of the corresponding impulse response matrix ( )g t . The most popular 
system norms when dealing with uncertainty models for robust control are:  

- the H∞  norm  
 

[ ]|| || sup ( )
R

G G j
ω

σ ω∞
∈

= ;  

 
- the 2H  norm  
 

2 0
1|| || trace ( ) ( )

2
G G j G j dω ω ω

π
∞ ∗⎡ ⎤= ;⎣ ⎦∫  

 
- the 1L  norm  
 

1 01 1
|| || max ( )

m

iji … p j
G g t dt

∞

= , , =
= | | .∑∫  

 
The interpretation of the above system norms in terms of input-output gain (1) are 
reported in Table 1 for SISO systems.   

 
An uncertain polynomial family of order n  is defined as 
 

{ }1
1 1 0( ) ( ) ( ) ( ) ( )n n

n ns p a p s a p s … a p s a p p Bδ −
−; = + + + + , ∈ ,  (2) 
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where 1( )qp p … p ′= ,  is the parameter vector, qB R⊂  is the parameter set, and 

ia B R: ⎯→ , 1i … n= , ,  are given functions. It is usually assumed that B  is arcwise 
connected and ( )ia ⋅  are continuous functions. Also, ( ) 0na p ≠ , p B∀ ∈ , to guarantee an 
invariant degree polynomial family.  
 

 
 

Table 1: System induced norms for SISO systems. 
 
- 
- 
- 
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