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Summary 
 
H∞-infinity optimization is a design method for control systems based on minimization 
of the H∞-infinity norm of the closed-loop transfer matrix. Both closed-loop 
performance and robustness may be characterized in terms of this norm. The method 
therefore has considerable potential for dealing with both aspects of control system 
design. 
 
To elucidate this a brief overview is given of the importance of closed-loop functions 
such as the sensitivity function and the complementary sensitivity function in analyzing 
performance and robustness. This leads to the mixed sensitivity problem, which in turn 
is a special case of the standard H∞-infinity problem. 
 
All solutions of the standard H∞-infinity problem rely on first determining sublevel 
solutions. Optimal solutions are approached by a line search on the level. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. IX – H∞ Optimal Control - Huibert Kwakernaak 

 

©Encyclopedia of Life Support Systems (EOLSS) 

The standard H∞-infinity problem may be solved by spectral factorization. The state 
space solution relies on the solution of two algebraic Riccati equations. Many other 
variants of the H∞-infinity problem have been studied. 
 
The article concludes with a brief review of the importance of H∞-infinity methods for 
robust control system design. 
 
1. Introduction 
 

∞H optimization was introduced in the control field by the American engineer and 
applied mathematician George Zames (1934–1997) in the late 1970s. The subject fits in 
the major stream of work initiated by Norbert Wiener (1894–1964) to cast design 
problems as mathematical optimization problems. The idea is to express the success of a 
tentative design in meeting the design objective as a numerical value. Then all that is 
needed to obtain the best design is to solve the mathematical problem of maximizing (or 
minimizing, as the case may be) this number with respect to the free parameters in the 
design. 
 
Wiener, who profoundly affected many developments in systems and control theory, 
developed this idea during the Second World War for filter design, but it was soon 
recognized that it could be used for feedback control system design as well. After a 
somewhat unfortunate period in the history of control, when during the 1960s control 
system design was confused with trajectory optimization, the important work of 
Rudolph E. Kalman on what became known as LQG optimization refocused the control 
community’s interest on feedback as its most essential feature. Kalman was an 
American control theorist whose work on optimal filtering and control in the late 1950s 
and 1960s was decisive for the development of systems and control theory. 
 
A very powerful property of feedback control is that a properly designed feedback 
system with sufficiently high gain is intrinsically robust, that is, insensitive with respect 
to uncertainties and variations in the plant dynamics. Although Kalman was the first to 
recognize that LQG-optimal feedback systems have very favorable robustness 
properties, the formulation of the problem itself does not address robustness at all but 
solely involves performance expressed in terms of mean square errors. Only a thorough 
understanding of the robustness properties of LQG-optimal systems, the optimization 
criterion, makes it possible to comply with robustness design targets, be it indirectly. 
 
When Zames formulated the first version of what became known as ∞H  optimization 
his ambition was to make robustness an intrinsic feature of the optimization problem. In 
his early lectures on the subject he announced his results as a design solution that would 
definitively eliminate the trial and error approach that characterizes other optimization 
approaches to control system design. It is interesting to observe that these high hopes in 
the end were not met even though ∞H  optimization developed to a powerful design 
method. (See also Optimal Linear Quadratic Control (LQ), and LQ-Stochastic Control.) 
 
2. The Minimum Sensitivity Problem 
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To introduce ∞H  optimization consider the simple single-input–single-output feedback 
loop of Figure 1. If the signal v represents the disturbance that acts on the feedback loop 
and L is the loop gain (expressed as a Laplace transfer function) then the output signal z 
of the feedback system is given by 

1
1

z v
L

=
+

 (1) 

 
 

Figure 1. SISO feedback loop 
 
This relation defines the sensitivity function 

1
1

S
L

=
+

 (2) 

 
of the closed-loop system. The sizes of the disturbance v and the output signal z may be 
represented by their well-known 2-norms 

2
2 | ( ) |v v t dt

∞

−∞

= ∫ ,    2
2 | ( ) |z z t dt

∞

−∞

= ∫  (3) 

 
Given these signal norms, the norm of the function that maps the disturbance v to the 
output z may be defined as 

2

2
sup

v

z
S

v
=  (4) 

 
Obviously, whatever the disturbance v is, the norm of the output z is always bounded by 

2 2z S v≤ ⋅  (5) 
 
Thus, if we manage to make the norm S  as small possible then we may be sure that 
the norm of the output signal is as small as possible given the norm of the disturbance. 
This is the argument that led Zames to consider the “minimum sensitivity problem,” the 
first ∞H  optimization problem that was studied. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. IX – H∞ Optimal Control - Huibert Kwakernaak 

 

©Encyclopedia of Life Support Systems (EOLSS) 

A simple mathematical argument based on Parseval’s theorem from Fourier analysis 
reveals that 

2 2 2 2
2 ˆˆ| ( ) | | ( ) | | ( 2 ) ( ) |z z t dt z f df S j f v f df

−∞ ∞ ∞

∞ −∞ −∞

= = = π∫ ∫ ∫  (6) 

is minimal if 
sup | ( 2 ) |

f
S S j f= π  (7) 

is minimal. Here ẑ  and v̂  are the Fourier transforms of z and v, respectively. 
 
Zames solved the problem of minimizing S  by interpolation theory. Simple examples 
soon showed that the minimum sensitivity problem as stated usually leads to unrealistic 
feedback systems with infinite bandwidth, often with infinite gain. Inspection of 

1/(1 )S L= +  confirms the well-known fact that because for any real-world system the 
loop gain L vanishes at high frequencies (where the precise meaning of “high” depends 
of course on the particular system) the sensitivity function approaches 1 for these same 
high frequencies. This led Zames to modify the sensitivity problem to the “minimum 
weighted sensitivity problem,” which amounts to minimizing an expression of the form 

sup | ( 2 ) ( 2 ) |
f

SW S j f W j f= π π  (8) 

 
W is a suitable weighting function. Clearly, this approach is rather unsatisfactory 
because the acceptability of the design crucially depends on the choice of the weighting 
function W. This led to the study of other ∞H  problems, in particular “the mixed 
sensitivity problem” discussed in Section 4. 
 
The system norm S defined by Eq. (4) is said to be induced by the 2-norm on the 
input and output signals. Because of the explicit representation Eq. (7) of this norm, 
which is similar to the definition of the ∞ -norm of a signal, the system norm is usually 
referred to as the ∞ -norm of the system with transfer function S, and correspondingly 
denoted as 

sup | ( 2 ) |
f

S S j f∞ = π  (9) 

 
The name ∞H  optimization problem refers to the fact that the problem may be viewed 
as an optimization problem over functions defined on the Hardy space ∞H  of stable 
causal frequency response functions. G.H. Hardy (1877–1947) was a famous British 
pure mathematician working on number theory who used to boast of his certainty that 
his work would never find any practical application. (See also Closed-Loop Behavior.) 
 
3. Robustness and the Sensitivity Functions 
 
In the same period when Zames developed his ideas John C. Doyle, another American 
control theorist, presented some ideas on robustness which were no doubt partly 
inspired by Zames’ earlier work on the applications of the small gain theorem in 
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network and control theory. The small gain theorem states that a sufficient condition for 
the closed-loop system of Figure 1 to be stable is that the norm L  of the loop gain is 
less than 1. Doyle applied this criterion to study the robust stability of the configuration 
of Figure 2. In this diagram the block LΔ  is called a “proportional” perturbation of the 
loop gain because it modifies the loop gain from L to (1 )L L+ Δ . 
 

 
 

Figure 2. Perturbed feedback loop 
 

 
 

Figure 3. Alternative perturbation 
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The configuration of Figure 2 may be viewed as a feedback loop whose loop gain is the 
series connection of the block LΔ  and a block with transfer function T− , where 

1
LT

L
=

+
 (10) 

 
This transfer function is known as the “complementary sensitivity function” because 

1S T+ = . By the small gain theorem, the closed-loop system is guaranteed to be stable 
if 1LTΔ < . By the sub-multiplicativity property of induced norms it follows that if  

1L TΔ ⋅ <   (11) 
 
then 1LTΔ <  and, hence, the closed-loop system is guaranteed to be stable. It follows 

that for maximal robustness the norm T  of the complementary sensitivity function 
should be as small as possible. 
 
This argument holds for any norm with the sub-multiplicativity property. A convenient 
choice is the ∞ -norm that we met in the previous section. 
 
The analysis so far points at the complementary sensitivity function as the critical 
system function for robustness. This is in conflict with the fundamental fact from 
feedback theory that the benefits that feedback brings are accomplished by making the 
loop gain L large. Inspection of Eq. (10), however, shows that if L is large then the 
complementary sensitivity T is close to 1, which is not particularly small. How can this 
be reconciled? 
 
The answer to this question is that the small gain theorem leads to sufficient conditions, 
which guarantee stability but are not always necessary. Application of the small gain 
theorem in a slightly different framework may easily yield a different set of sufficient 
conditions. Consider for instance the block diagram of Figure 3. Note that the 
perturbation, denoted as 1L−Δ  for reasons that will soon become clear, is connected in a 
local feedback loop. A simple computation shows that the perturbation modifies the 
loop gain from L to  

11 L

L
−+ Δ

 (12) 

 
This expression becomes more transparent by noting that the perturbation modifies the 
inverse loop gain 1/ L  to 

11 L
L

−+ Δ
 (13) 

 
Thus, 1L−Δ  really is the relative perturbation of the inverse loop gain. There is no reason 
why we should not consider this, especially if we observe that the configuration of 
Figure 3 may be seen as the block 1L−Δ  connected in a feedback loop with another 
block with transfer function 1/(1 )S L− = − + , where S is the sensitivity function. By the 
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small gain theorem, stability is guaranteed if 1 1L S−Δ ⋅ < , which, in turn, certainly 

holds if 
1 1L S−Δ ⋅ <  (1) 

 
Thus, the alternative analysis, based on perturbations of the inverse loop gain, leads to 
the sensitivity function S as a critical quantity for robustness. Much to our relief, 
inspection of Eq. (2) shows that if the loop gain L is large then S is small, which 
confirms the notion that a large loop gain implies good robustness. 
 

 
 

Figure 4. Ideal sensitivity functions 
 
The nagging question remains: what is wrong with the previous analysis that led to the 
complementary sensitivity function T as the critical function? S and T cannot 
simultaneously be small, precisely because they are complementary: that is, add up to 1. 
The answer to this question is that the functions S and T are both critical for robustness, 
but never simultaneously, and in different, complementary frequency regions. The 
sensitivity function S is typically critical in the low frequency range, where the loop 
gain can be made large, the sensitivity to disturbances needs to be small, and the 
robustness with respect to parameter variations caused by load and other environmental 
changes needs to be good. The complementary sensitivity function T is critical—that is, 
needs to be small—at high frequencies. At high frequencies the loop gain L, and hence 
also T, should quickly drop off to very small values. This prevents waste of bandwidth, 
provides robustness against high frequency modeling uncertainty, and reduces the effect 
of measurement noise in the feedback loop. 
 
Figure 4 shows ideal shapes for the sensitivity functions, with S small at low 
frequencies and T small at high frequencies. The actual critical frequency region is the 
crossover region, where the magnitude | |L  of the loop gain crosses over the zero dB 
line. The zero dB line separates the high and the low gain areas. For adequate stability, 
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good time responses and sufficient robustness the Nyquist plot of the loop gain should 
stay away from the critical point 1−  in the complex plane. The Nyquist plot approaches 
the critical point most closely for frequencies in the crossover region. If L gets very near 
to the critical point then both S and T peak to dangerously large values. (See also 
Uncertainty Models for Robustness Analysis.) 
 
- 
- 
- 
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