
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. X – Self-Tuning Control - P.J. Gawthrop  
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

SELF-TUNING CONTROL  
 
P.J. Gawthrop 
Centre for Systems and Control and Department of Mechanical Engineering, University 
of Glasgow, GLASGOW. G12 8 QQ Scotland,UK 
 
Keywords: Self-tuning Control, Control Algorithm, Control Design, Relative Degree 
 
Contents 
 
1. Introduction 
2. Categorization of Self-Tuning Controllers. 
2.1 Explicit or implicit 
2.2 Continuous-time or discrete-time 
2.3 Choice of controller design method 
2.4 Choice of identification method 
3. Implicit generalized minimum variance control 
4. Practical issues 
4.1 Choice of design parameters 
4.2 Integral action 
4.3 Initial conditions 
5. Examples 
5.1. Example 1: Implicit Model-Reference Control 
5.2 Example 2: Explicit Model-Reference Control 
5.3 Example 3: Explicit Pole-placement Control of non-minimum phase system 
5.4. Examples 4 and 5 : Under-modeled systems 
6. Future prospects 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
Self-tuning control is a simple method for controlling systems with uncertainty which 
has a long history of successful application. 
 
1. Introduction  
 
There are many approaches to the adaptive control of unknown systems (see Adaptive 
control). Within this broad area, Self-tuning control provides a pragmatic approach to 
the control of unknown systems which combines two well-established technologies: 
 
   1. the design of a controller for a known dynamical system and  
 
   2. the recursive identification (see Identification of Linear Systems in Time Domain) 
       of unknown system parameters from measured system input and output data. 
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Fig 1 shows the basic idea of self-tuning control. There are four boxes in this diagram 
which can be interpreted as follows: 
 
System: represents the dynamical system to be controlled with input u and output y . 
Ident: represents the recursive system identification algorithm used to estimate 
unknown system parameters θ . 
Design: represents the design method which chooses the controller parameters Θ in 
terms of the system parameters θ . 
Controller: represents the feedback controller which manipulates the system input u to 
drive the system output y towards the desired system output, or setpoint w . The 
controller has a set of adjustable parametersΘ . 

 
 

Figure 1: Explicit self-tuning control 
 
The self-tuning approach is simple insofar as it takes the certainty equivalent approach. 
In particular the fundamental simplifying assumptions in the creation of the algorithm 
are that: 
 
   1. The controller design does not account for errors in the estimated parameters 
 
   2. The controller design does not explicitly generate control signals leading to better 
system identification 
 
These are simplifying assumptions insofar as the design of the controller and the system 
identification are independent.  
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However, the user should be aware that this simplification potentially degrades 
performance. In particular, a more sophisticated adaptive controller would have three 
components in the design of the control signal:  
 

1. the certainty equivalent component as in the self-tuning approach,  
 

2. a caution component reflecting the fact that the controller is based on uncertain 
system parameters and  

 
3. a probing component to produce system behavior leading to better system 

identification. 
 
The optimal design of such adaptive controllers is sometimes called dual control (see. 
Adaptive Dual Control). Nevertheless, there are many situations were the gain in 
simplicity outweighs any potential loss in performance; and many more cases where the 
heuristic addition of caution and probing can improve the situation. 
 
In this article, attention is restricted to linear, single-input, single-output systems of the 
form (see General models of dynamic systems) 
 
A s y t B s u t C s t= +( ) ( ) ( ) ( ) ( ) ( )ζ ,      (2) 
 
where y t , u t( ) ( ) ,and t( )ζ are the system output, input and disturbance process at the 
continuous-time t . A s ,B s( ) ( )and C s( ) are polynomials in the Laplace operators . Despite 
the fact that C s( ) appears in the system equation, it will be treated as a design parameter: 
this can clearly be done by redefining iζ appropriately. 
 
Such systems can be discretized (see Discrete-time, sampled-data, digital control 
systems, quantization effects) to give 
 

i i iA z y B z u C z= +( ) ( ) ( )ζ , (3) 
 
where i iy , u and iζ are the system output, input and disturbance process at the discrete-
time i. A z ,B z( ) ( )and C z( ) are polynomials in the forward shift operator z . 
 
An important feature of such models is that they can be rewritten in linear-in-the 
parameters form as: 
 
A s B sy t u t t
C s C s

=
( ) ( )( ) - ( ) ( )
( ) ( )

ζ  (4) 

 

i i i
A z B zy u
C z C z

− =
( ) ( )
( ) ( )

ζ . (5) 
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Because C s( ) (in the discrete-time case C z( ) ) assumed known, such models have the 
property that all unknown parameters-the parameters of A s( ) and B s( ) (in the discrete-
time case A z( ) and B z( ) )-appear in the transfer function numerators. 
 
The linear-in-the parameters model of Equation 4 can be written in the state-variable 
filter form: 
 

y td X t X t
u tdt
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

( )
( ) ( )

( )
C  (6) 

 
TX t t=θ ( ) ( )ζ , (7) 

 
where θ is the system parameter vector 
 

T
0 1 n 1 na a a b ... b=θ ( ... ; )  (8) 

 
and X t( ) contains the filtered measured data corresponding to the linear-in-the 
parameters model of  Equation 4. In Laplace operator terms 
 

n n 1 n 1 TX t s y t s y t ... y t s u t ... u t
C s

− −=( ) ( ( ) ( ) ( ); ( ) ( ))
( )
1  (9) 

 
Notice that usually at least one parameter (element of θ ) is known a-priori. The vector 
of the unknown parameters will be called θ , and the corresponding data vector X t( ) . 
 
In discrete-time form the linear-in-the parameters model of Equation 5 becomes 
 

i
d d d

i

y
X i X i

u
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

( ) ( )+C 1  (10) 

 
T
d d iX i =θ ( ) ζ  (11) 

 
Based on these linear-in-the-parameters models a simple recursive parameter 
identification algorithm is: 
 

Td ˆ ˆt K t X t t
dt

= −θ θ( ) ( ) ( ) ( ) , (12) 

 

where ˆ tθ( ) is the estimate of ˆ, tθ θ( ) is the estimate of θ , and K t( ) is the identification 
gain vector. Note that T ˆX t tθ( ) ( ) is a scalar product yielding a real number; all other 
terms in the equation are vectors. Possible choices of K t( ) are given in section 2.4. 
 
The corresponding discrete-time version is  
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T
i i i i i 1

ˆ ˆ ˆK X− −= −θ θ θ1  (13) 
 
2. Categorization of Self-Tuning Controllers. 
 
Section 1 delineates self-tuning controllers from the wider field: self-tuning control is 
based on the simplifying certainly-equivalence assumption. However, there are many 
subdivisions within the self-tuning field and, for this reason, this section provides a 
framework for categorising self-tuning controllers. The four main issues here are:  

 
 

Figure 2: Implicit self-tuning control 
 

1. Explicit or implicit self-tuning controller (Note that “indirect” is sometimes 
used in place of “explicit” and “direct” is sometimes used in place of 
“implicit”). 

 
2. Continuous-time or discrete-time formulation. 

 
3. Choice of controller design method. 

 
4. Choice of identification method. 

 
These issues are expanded in the following subsections. 
 
2.1 Explicit or implicit 
 
Figure 1 outlines the explicit approach. The name arises because the controller 
parametersΘ are explicitly computed (by the block labelled “Design” in terms of the 
system parameters θ . This has the advantage that many identification and control 
design approaches can be combined in this fashion. 
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Figure 2 outlines the implicit approach. The name arises because the two blocks in 
Figure 1 labelled “Ident.” and “Design” are collapsed into a single block labelled 
“Turner”; the block labelled “Tuner” implicitly calculates the controller parameters 
Θ without computing the system parameters θ as an intermediate step. 
 
The implicit approach has the advantage that: 
 

1. it is simpler in that the controller parameters Θ are computed directly by the block 
labelled “Tuner” 

2. it cannot suffer from the potential problem with the explicit method that there may 
be some values of the system parameters θ for which the design method gives no 
solution for Θ  

 
The  implicit approach has the disadvantage that  
 
   1. some design methods cannot be put into implicit form. 
 
2.2 Continuous-time or discrete-time 
 
The first self-tuning controller called by that name was developed at the same time as 
the early microprocessors and the adoption of digital control by industry. It is therefore 
not surprising that it was developed in a discrete-time context as that is how digital 
computers see the world. 
 
CT Discrete model Discrete controllerDiscretise Design
CT Continuous controller Discrete controllerDesign Discretise

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→
 

 
where CT = Continuous System  
 

 
 

Figure 3: Two design routes 
 
However, digital implementation does not imply discrete-time design. In fact, there are 
two possible design roots as indicated in Figure 3. 
 
Discrete-time design as indicated in the upper part of Figure 3 and  
 
Continuous-time design as indicated in the lower part of Figure 3 
 
The two approaches have the same end points (Continuous system and Discrete 
controller); but the sequence of discretize and design operations are reversed leading to 
different domains for the control design. 
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The Continuous-time approach has the advantage that: 
 

1. it is based on the physical system where the parameters have direct physical 
interpretation 

 
2. it retains the physical significance of properties such as relative degree 

 
3. it avoids artifacts of sampling such as non-minimum phase zeros 
4. the sampling rate can be chosen after the controller design 

It has the disadvantage that 
 

1. discretization has to be explicitly performed to design the controller 
 

2. C s( )must be chosen so that the linear-in-the parameters model of Equation 4 
contains proper  transfer functions to avoid practical implementation problems. 

 
2.3 Choice of controller design method 
 
There are many controller design methods that can be used in the context of self-tuning 
control. There are two methods that will be discussed in detail here; other related 
methods are given elsewhere (see Minimum Variance Control). 
 

1. Generalised minimum-variance control methods (see Minimum Variance 
Control). 

 
2. Pole-placement methods (see Pole placement control). 

 
The Generalised minimum-variance approach has the advantage that 
 

1. It is simpler 
 

2. It has many interpretations including a form of model-reference control 
 

3. Implicit versions are readily available 
 

4. It has no problems with systems with common factors in the numerator and 
denominator. 

 
It has the disadvantage that  
 
   1. Systems with unstable inverses may lead to unstable responses 
 
2.4 Choice of identification method 
 
The continuous-time identification methods considered here are of the form of Equation 
12. The difference lies in the choice of K t( ) . Three versions will be noted here which 
are all of the form: 
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1K t S t X t−=( ) ( ) ( )  (14) 
 
Least mean square TS t X t X t=( ) ( ) ( ) (a scalar) 
 
Stochastic approximation Td

dt S t X t X t=( ) ( ) ( )(a scalar) 
 
Least squares Td

dt S t X t X t=( ) ( ) ( )(a matrix) 
Least squares with exponential forgetting Td

dt S t Sc X t X t+ =β( ) ( ) ( ) (a matrix) where 
β  is the exponential forgetting factor. 
 
The discrete-time equivalents are: 
 
Least mean square T

i i iS X X= (a scalar) 
 
Stochastic approximation T

i i 1 i iS S X X−= + (a scalar) 
 
Least squares T

i i 1 i iS S X X−= + (a matrix) 
 
Least squares with exponential forgetting T

i d i 1 i iS S X X−= +β (a matrix) where dβ is 
the discrete-time exponential forgetting factor. 
 
There are numerous numerical tricks to effectively solve such recursive least-square 
algorithms which are beyond the scope of this chapter (see Identification of Linear 
Systems in the Time Domain). 
 
- 
- 
- 
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