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Summary 
 
The paper discusses the solution to the optimal adaptive control problem over an 
extended time horizon. This leads to a controller that has dual features, i. e.; it uses control 
actions as well as probing actions. The solution of the optimal dual control problem is 
intractable from a computational point of view. Approximations to obtain simpler 
suboptimal dual controllers are thus important.There are many different approaches 
concerning how to obtain suboptimal dual controllers. Many of the approximations use a 
cautious controller as a starting point and introduce different active probing features. This 
can be done by including a term in the loss function that reflects the quality of the 
estimates of the parameters of the process. To introduce a dual feature this term must be a 
function of the control signal that is going to be determined and it should also contain 
information about the quality of the parameter estimates. The suboptimal dual controllers 
should also be such that they easily can be used for higher-order systems. 
 
1. Introduction 
 
In all control problems there are certain degrees of uncertainty with respect to the process 
to be controlled. The structure of the process and/or the parameters of the process may 
vary in an unknown way. There are several ways to handle these types of uncertainties in 
the process. Feedback in itself makes the closed loop system, to some extent, insensitive 
against process variations. Fixed parameter controllers can also be designed to make the 
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closed loop system robust against process variations. Such controllers must, by nature, be 
conservative in the sense that the bandwidth of the closed loop system has to be decreased 
to reduce the influence of the variation in the process. Another way to handle 
uncertainties is to use an adaptive controller. In the adaptive controller, there are attempts 
to identify or estimate the unknown parameters of the process. 
 

 
 

Figure 1: Self-tuning adaptive control system. 
 
Most adaptive controllers have the structure shown in Figure 1, which is a self-tuning 
adaptive control system. The inputs and the outputs of the process are fed to the estimator 
block, which delivers information about the process to the controller design block. The 
design block uses the latest process information to determine the parameters of the 
controller. The adaptive controller thus consists of an ordinary feedback loop and a 
controller parameter-updating loop. Different classes of adaptive controllers are obtained 
depending on the process information that is used in the controller and how this 
information is utilized. 
 
To obtain good process information it is necessary to perturb the process. Normally, the 
information about the process will increase with the level of perturbation. On the other 
hand, the specifications of the closed loop system are normally such that the output 
should vary as little as possible. There is thus a conflict between information gathering 
and control quality. This problem was introduced and discussed by A.A. Feldbaum in a 
sequence of four seminal papers from 1960 and 1961, see the references. Feldbaum’s 
main idea is that in controlling the unknown process it is necessary for the controller to 
have dual goals. First, the controller must control the process as well as possible. Second, 
the controller must inject a probing signal or perturbation to get more information about 
the process. By gaining more process information, better control can be achieved in future 
time. The compromise between probing and control or in Feldbaum’s terminology 
investigating and directing leads to the concept of dual control. Feldbaum showed that a 
functional equation gives the solution to the dual control problem. The derivation is based 
on dynamic programming and the resulting functional equation is often called the 
Bellman equation. The solution to this equation is intractable from a numerical point of 
view and only a few very simple examples have been solved, analytically or numerically. 
There is thus a great need for different approximations that can lead to simpler suboptimal 
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solutions with dual features. In the suboptimal dual controllers, it is necessary to 
introduce both cautious and probing features. Both parts of the control action can be 
obtained in numerous ways and different proposed schemes would be classified into a 
handful of principles. This article gives an overview of adaptive dual control. To do so, it 
is also necessary to introduce some concepts from the general field of adaptive control. 
 
2. Stochastic Adaptive Control 
 
To formulate the adaptive dual control problem we must specify the model for the process, 
the admissible control signals, and the specifications (loss function) for the closed loop 
system. Introduce the following notations: y(k) is the process output, u(k) is the control 
signal, θ(k) is a vector of the unknown parameters of the process, θ̂ (k) is the current 
estimate of the process parameters, and P(k) is the parameter uncertainty. Inputs up to 
time k − 1 and outputs up to time k are collected into the vector 
 
 [ ( ) ( 1) ( 1) (0) (0)]kY y k y k u k y u= − − …   (1) 
 
It is assumed that the process is described by the discrete time model 
 ( 1) ( ( ), , ( ), ( ))ky k f u k Y k kθ ζ+ =  (2) 
 
where ζ(k) is a stochastic process driving the process and/or the parameters of the process. 
The probability distribution of ζ is assumed known. This implies that the output at the 
next sampling instance: k + 1 is a possibly nonlinear function of the control signal to be 
determined at time k, some, not necessarily all, of the elements in Yk and of the unknown 
process parameters. It is assumed that the function f(·) is known. This implies that the 
structure of the process is known but that there are unknown parameters, θ(k). The 
admissible controllers are causal functions g(·) of all information gathered up to time k, i. 
e. Yk. If the parameters of the process are known the control signal at time k is also 
allowed to be a function of θ(k). 
 
The performance of the closed loop system is measured by a loss function that should be 
as small as possible. Assume that the loss function to be minimized is 

 
1

1 ( ( ), ( 1), ( ), )
N

N r
k

J E h y k u k y k k
N =

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (3) 

 
where y is the process output, yr is the reference signal, h(·) is a positive convex function, 
and E denotes mathematical expectation taken over the distribution of ζ. This is called an 
N-stage criterion. The loss function should be minimized with respect to the admissible 
control signals  
 
u(0), u(1), ..., u(N − 1). A simple example of the loss function is 

 2

1

1 ( ( ) ( ))
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J E y k y k
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The parameters of the process can be described in several different ways, for instance, as 
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• Random walk 
• Random walk with local and global trends 
• Jump changes 
• Markov chain 

 
Random walk implies that the parameters are drifting due to an underlying stochastic 
process. In the Markov chain model, the parameters are changing between a finite number 
of possible outcomes. Depending on the type of variation of the process parameters, it is 
necessary to use different estimation methods. It is thus assumed that the parameter 
variation is described in stochastic terms where the probability distribution of the process 
is known. Different types of prediction error methods can be used to obtain the 
probability distribution of the parameters. If the process is linear in the parameters and if 
the parameter variations can be described by a Gaussian process then the distribution is 
fully characterized by the mean value θ̂ (k) and the co-variance matrix P(k). The 
covariance matrix is used as a measure of the uncertainty of the parameter estimates. The 
future behavior of P(k) depends on the choice of the control signal. 
 
The model, with the description of its parameter variations, the admissible control laws, 
and the loss function are now specified. The adaptive control problem has been 
transformed into an optimization problem, where the control signals over the control 
horizon have to be determined. One of the difficulties in the optimization problem is to 
anticipate how the future behavior (or formally the behavior of the distribution function) 
of the parameter estimates will be influenced by the choice of the control signals. The 
controllers minimizing Eq. (3) are very different if N = 1 or if N is large. The stochastic 
adaptive control problem can be attacked in many different ways. Many adaptive 
controllers are based on the separation principle. This implies that the unknown 
parameters are estimated separately from the design part. The separation is sometimes 
optimal and is in other cases used as an assumption. The separation principle holds, for 
instance, for the Gaussian case and when the process is linear in the unknown parameters, 
and the loss function is a quadratic function. 
 
Assume that for the known parameter case the optimal controller is 
 
 ( ) ( , ( ))known ku k g Y kθ=  (5) 
 
The simplest adaptive controller is thus obtained by estimating the unknown process 
parameters θ̂ (k) and then use them as if they were the true ones, i. e. use the controller 
 
 ˆ( ) ( , ( ))known ku k g Y kθ=  (6) 
 
An adaptive controller of this kind is said to be based on the certainty equivalence 
principle. Self-tuning controllers are, in general, of this kind. The control actions 
determined in the design block, when using the certainty equivalence principle, do not 
take any active actions that will influence the uncertainty. An optimal adaptive controller 
should also consider the quality of the parameter estimates when designing the controller. 
Poor estimates, or information, should lead to other control actions than good estimates. 
A simple modification of the certainty equivalence controller is obtained by minimizing 
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the loss function in Eq. (3) which is only one step ahead. This leads to a controller that 
also uses the uncertainties of the parameter estimate. This type of controller is called a 
cautious controller. The cautious controller has the form 
 
 ˆ( ) ( , ( ), ( ))cautious cautious ku k g Y k P kθ=  (7) 
 
The cautious controller obtained when the control horizon in Eq. (3) is N = 1, which is 
sometimes also called a myopic controller, since it is shortsighted and looks only one step 
ahead. The cautious controller hedges against poor process knowledge. A consequence of 
this caution is that the gain in the controller is decreased. With small control signals, less 
information will be gained about the process and the parameter uncertainties may 
increase, and even smaller control signals will be generated. This vicious circle leads to 
turn-off of the control. This problem mainly occurs for systems with strongly, 
time-varying parameters. An adaptive control scheme is sometimes also denoted weakly 
dual; if it uses the model uncertainties when deriving the control signal. The certainty 
equivalence and the cautious controllers do not deliberately take any measure to improve 
the information about the unknown process parameters. They are thus non-dual adaptive 
controllers. The learning is “accidental” or “passive”, i. e. there is no intentional probing 
signal introduced. 
 
Example 
 
Consider an integrator process in which the gain is changing in a stochastic way, i. e. we 
have the model 
 
 ( ) ( 1) ( ) ( 1) ( )y k y k k u k e kθ− − = − +  (8) 
 
where e(k) is white noise. The gain of the integrator is modeled as 
 
 ( 1) ( ) ( )k k kθ ϕθ ν+ = +  (9) 
 
where ϕ is known and ν(k) is white noise. 
 
The certainty equivalence controller that minimizes the variance of the output is given by 

 1( ) ( )ˆ( 1)
u k y k

kθ
= −

+
 (10) 

 
It is immediately clear that this controller is not good when θ̂  = 0. The cautious controller 
is 

 2

ˆ( 1)( ) ( )ˆ ( 1) ( 1)
ku k y k

k p kθ

θ
θ

+
= −

+ + +
 (11) 

 
where pθ is the uncertainty of the estimate θ̂ . By including the parameter uncertainty, the 
gain in the controller is decreased when pθ becomes large. The cautious controller is also 
less sensitive than the certainty equivalence controller to parameter errors when θ̂ (k + 1) 
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is small. The gain in the cautious controller approaches zero when pθ increases, i. e. there 
is a possibility that the control action is turned off when the excitation of the process 
decreases. The cautious controller approaches the certainty equivalence controller when 
pθ  approaches zero. 
 
- 
- 
- 
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