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Summary 
 
A system is sometimes considered to be large scale if it can be partitioned or decoupled 
into a number of subsystems, that is, small-scale systems. Another viewpoint is that a 
system is termed large scale if its dimensions are so great that conventional techniques 
of modeling, analysis, control, design, optimization, estimation, and computation fail to 
give reasonable solutions with reasonable efforts.  
 
A third definition is based on the notion of centrality. Until the advent of large-scale 
systems, almost all control systems analysis and design procedures were limited to 
having system components and information flow from one point to another localized or 
centralized in one geographical location or center, such as a laboratory. 
 
 Thus, another definition is a system in which the concept of centrality fails. This can-be 
due to a lack either of centralized computing capability or of a centralized information 
structure. Large-scale systems appear in such diversified fields as sociology, business, 
management, the economy, the environment, energy, data networks, computer 
networks, power systems, flexible space structures, internet-based systems, 
transportation, aerospace, and navigational systems. 
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1. Historical Background 
 
Since the 1950s, system theory has evolved from a semi-heuristic discipline directed 
toward the design and analysis of electronic and/or aerospace systems consisting of a 
handful of components into a very sophisticated theory capable of treating complex and 
large systems with myriad applications. The theory must deal not only with electronic 
and aerospace systems, the complexities of which have increased by several orders of 
magnitude, but also with a vast number of real-life systems in society, the economy, in-
dustry, and government. 
 
Initially, system engineers attempted to cope with this increasing system complexity 
through the development of sophisticated numerical techniques in order to apply 
classical systems theory to large systems. This approach, however, soon reached a point 
of diminishing returns, and it became apparent that new system theoretical techniques 
would be necessary to handle large and complex systems. Although many such 
techniques are still being developed and require a great deal of fine-tuning, it is gen-
erally accepted that a key to the successful treatment of a large-scale system is to exploit 
fully its structural interconnection. This exploitation traditionally takes place in two 
ways: through the full use of, say, sparse matrix techniques or through the 
"decomposition" of a larger system into a finite number of smaller systems. 
 
2. Modeling and Model Reduction 
 
The first step in any scientific or technological study of a system is to design a 
mathematical model of the real problem. In any modeling tasks, two often conflicting 
factors prevail: simplicity and accuracy. On the one hand, if a system model is 
oversimplified, presumably for the sake of computational effectiveness, incorrect con-
clusions may be drawn from it in representing an actual real system. On the other hand, 
a highly detailed model can lead to unnecessary complications, and even if a feasible 
solution is attainable, the amount of detail generated may be so vast that further 
investigations on the system behavior are impossible and the practical value of the 
model becomes questionable. Clearly, a mechanism by which a compromise can be 
made between a complex, more accurate model and a simple, less accurate model is 
needed. Creating such a mechanism is not a simple undertaking. (See Mathematical 
Modeling.) 
 
In the area of large-scale systems there have been three general classes of modeling 
techniques. These are aggregation, perturbation, and descriptive variable schemes. An 
aggregate model of a system is described by a "coarser" set of variables. The underlying 
reason for aggregating a system model is to retain the key qualitative properties of the 
system, such as stability, which can be viewed as a natural process through the second 
method of Lyapunov. In other words, the stability of a system described by several state 
variables is fully represented by a single variable — the Lyapunov function. Figure 1 
presents a pictorial representation of the aggregation process. The system on the left is 
described by four variables (circles), and the system on the right represents an 
aggregated model in which two variables now describe the system. Variable 1, called 

1z , is an average of the first two variables of the full model, while the second aggre-
gated variable 2z  is an average of the third and fourth variables. 
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Another approach for large-scale system modeling is perturbation, which is based on 
ignoring certain interactions of the dynamic or structural nature of a system. Here again, 
however, the key system properties must not be sacrificed for the sake of reduced 
computations. Although both perturbation and aggregation schemes tend to reduce the 
computations needed and perhaps provide a simplification of structure, there has been 
no firm evidence that they are the most desirable for large-scale systems. 
 
A new type of large-scale system modeling is the descriptive variable scheme. Here the 
fundamental principle is that the accuracy of a given large-scale system model is most 
likely preserved if the system is represented by the actual physical or economical 
variables that describe the operation of the system—hence the name descriptive 
variable. 
 

 
 

Figure. 1. Pictorial representation of the aggregation process. 
 
This section is devoted to an examination of aggregation and perturbation, methods 
viewed as modeling alternatives for large-scale systems. 
 
2.1. Aggregation 
 
Aggregation has long been a technique for analyzing static economic models. The 
modern treatment of aggregation is based on the formulations of Malinvaud, which are 
shown in Fig. 2. In this diagram, , ,X Y Z , and V  are topological (or vector) spaces, and 
f  represents a linear continuous map between the exogenous variable x Xε  and 

endogenous variable y Yε . The aggregation procedures :h X Z→  and :g Y V→  lead 
to aggregated variables z Z∈  and v Vε . The map :k Z V→  represents a simplified or 
an aggregated model. The aggregation is said to be "perfect" when k  is chosen such 
that the relation 
 

( ) ( )g f x k h x=  (1) 
 
holds for all x X∈ . The notion of perfect aggregation is an idealization at best, and in 
practice it is approximated through two alternative procedures, according to 
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econometricians. These are (a) to impose some restrictions on f , g , and h  while 
leaving X  unrestricted and (b) to require Eq. (1) to hold on some subset of X . 
 
2.1.1 Balanced Aggregation 
 
One of the main shortcomings of model reduction methods is the lack of a strong 
numerical tool to go with the well-developed theory.  For example, the minimal 
realization theory of Kalman offers a clear understanding of the internal structure of 
linear systems.  The associated discussion on controllability, observability, and minimal 
realization often illustrate the points, but numerical algorithms are adequate only for 
low-order textbook examples.  Furthermore, there has been little connection made 
between minimal realization, controllability and observability, and model reduction on 
the other hand.  In this section we propose the Principal Component Analysis of 
statistics along with some algorithms for the computation of “singular value 
decomposition” of matrices to develop a model reduction scheme which makes the most 
controllable and observable modes of the system transparent.  Under a certain matrix 
transformation, the system is said to be “balanced” and the most controllable and 
observable modes would become prime candidates for reduced-order model states. 
 
Consider an asymptotically stable, controllable and observable linear time invariant 
system  
 
( ), ,A B C defined by 
 
( ) ( ) ( )x t Ax t Bu t= +�  (2a) 

 
( ) ( )y t Cx t= , (2b) 

 
where , ,x u y  are state, input and output vectors, and A , B , and C  are n n×  system, 
n m×  input and r n×  output matrices, respectively. The balanced matrix method is 
based on the simultaneous diagonalization of the positive definite controllability and 
observability Gramians of Eq. (2) which satisfy the following Lyapunov-type equations: 
 

0T T
c cG A AG BB+ + =  (3) 

 

0 0 0T TG A A G C C+ + = . (4) 
 
The balance approach of model reduction is essentially the computation of a similarity 
transformation matrix S  such that both cG  and 0G  become equal and diagonal, that is, 
balanced. This transformation matrix is given by, 
 

1 2S V D P −= Σ , (5) 
 
where orthogonal matrices V  and P  satisfy the following symmetric eigenvalue/ 
eigenvector problems. 
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2T
cV G V D=  (6) 

 
and  
 

( ) ( ) 2
0

TTP VD G VD P⎡ ⎤ = Σ
⎣ ⎦

 (7) 

( )1 1
0

TT
cS G S S G S− −Σ = =  

  ( )1 2diag , , , nσ σ σ= … . (8) 
 
Here D  is a diagonal matrix like Σ .  The diagonal elements of Σ  have the property that 

1 2, , , 0nσ σ σ≥ ≥ >…  and are called second-order modes of the system.  Using the 

transformation  1x̂ S x−= , one obtains the following full-order equivalent system, 
 

12

221 22

ˆ
ˆ ˆˆ ˆ ˆ ˆˆ ˆ

GF A
x Ax Bu x u

BA A

⎡ ⎤ ⎡ ⎤
⎢ ⎥= + = + ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

�       (9) 

 

2
ˆ ˆˆ ˆ|y Cx H C x⎡ ⎤= = ⎣ ⎦ , (10) 

 
where 
 

1 1ˆ ˆˆ, andA S AS B S B C CS− −= = =  (11) 
 
Now, if 1r rσ σ +�  for a given r , and internally dominant reduced-order model of 
order r  can be obtained from Eqs. (9) and (10) by 
 

zz F Gu= =�  (12) 
 
y Hz= , (13) 
 
where ( ), ,F G K  matrices represent the desired reduced order model. 
 
Although this partitioning of second-order models leading to a reduced and residual 
model are somewhat arbitrary, grouping the most controllable and observable modes 
together does provide a reasonable criterion for model reduction. 
 
2.2. Perturbation 
 
The basic concept of perturbation methods is the approximation of a system's structure 
by neglecting certain interactions within the model that lead to lower order. From a 
large-scale system modeling viewpoint, perturbation methods can be considered to be 
approximate aggregation techniques. 
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Two basic classes of perturbation are applicable to large-scale system modeling: 
"weakly coupled" models and "strongly coupled" models. This classification is not 
universally accepted, but a great number of authors have adapted it; others refer to these 
classes as non-singular (regular) and singular perturbations. 
 
 
2.2.1. Weakly Coupled Models 
 
In many industrial control systems certain dynamic interactions are neglected to reduce 
the computational burden for system analysis, design, or both. This is practiced in 
chemical process control and space guidance, for example, where different subsystems 
are designed for flow, pressure, and temperature control in an otherwise coupled process 
or for each axis of a three-axis attitude control system. The computational advantages of 
neglecting weakly coupled subsystems, however, are offset by a loss of overall system 
performance. In this section weakly coupled models for large-scale linear systems are 
introduced. 
 

 
 

Figure 2. Pictorial representation of aggregation, (a) A static system; (b) a dynamic 
linear system. 

 
Consider the following linear large-scale system split into two subsystems: 
 

1 1 12 1 1 12 1

2 21 2 2 21 2 2

x A A x B B u
x A A x B B u

ε ε
ε ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

. (14) 

 
It is clear that when 0ε = , this system decouples into two subsystems, 
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2 1 1 1 1

2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

x A x B u

x A x B u

= +

= +

�

� , (15) 

 
which correspond to two approximate aggregated models, one for each subsystem. In 
this way the computation associated with simulation and design will be reduced 
drastically, especially for large-system order n  and k  greater than two subsystems. In 
view of the decentralized structure of large-scale systems (Section 4), these two 
subsystems can be designed separately in a decentralized fashion, as shown in Fig. 3. 
 
Research on weakly coupled systems has followed two main lines. The first is to set 

0ε =  in Eq. (2) and try to find a quantitative measure of the resulting approximation 
when in fact 0ε ≠  under actual conditions. Such measures usually correspond to a loss 
of performance for a linear optimal control problem. Our focus here is not on the loss of 
optimality due to decomposition; rather, our object is to introduce conditions under 
which a system can be considered weakly coupled. 
 

 
 

Figure 3.  Decentralized control structure for two weakly coupled subsystems. 
 
The second line of research is to exploit such a system in an algorithmic fashion in order 
to find an approximate optimal feedback gain through a MacLaurin's series expansion of 
the accompanying Riccati matrix in the coupling parameter ε . It has been shown that 
retaining k  terms of the Riccati matrix expansion would give an approximation of order 
2k  to the optimal cost. 
 
3. Strongly Coupled Models 
 
Strongly coupled models are those with variables of highly distinct speeds. Such models 
are based on the concept of singular perturbation, which differs from regular 
perturbation (weakly coupled systems) in that perturbation is to the left of the system's 
state equation, that is, a small parameter multiplying the time derivative of the state 
vector. In practice many systems, most of them large in dimension, possess fast-
changing variables displaying a singularly perturbed characteristic. For example, in a 
power system, the frequency and voltage transients vary from a few seconds in 
generator regulators, shaft-stored energy, and speed governor motion to several minutes 
in prime mover motion, stored thermal energy, and load voltage regulators. 
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Similar time-scale properties prevail in many other practical systems and processes, 
such as industrial control systems (e.g., cold rolling mills), biochemical processes, 
aircraft and rocket systems, and chemical diffusion reactions. In fact, some of the "order 
reduction" techniques that were discussed can be explained in terms of singular 
perturbation. 
 
Consider a singularly perturbed system described by 
 
( ) ( ) ( ) ( )1 12 1x t A x t A z t B u t= + +�   

( )0 0x t x=  (16a) 
 

( ) ( ) ( )21 2z t A x t B u tε = +�  

( )0 0z t z= . (16b) 
 
If 2A  is nonsingular, as 0ε → , Eq. (16) becomes 
 
( )( ) ( )1 1

1 12 21 1 12 2ˆ ˆx t A A A x B A A u− −− + −�  (17) 

 
( ) 1 1

2 2 2ˆ ˆẑ t A x A B u− −= − − . (18) 
 
Equation (17) is an approximate aggregated model in which the n eigenvalues of the 
original system are, in effect, approximated by the l eigenvalues of the 

( )1
1 12 21A A A A−−  matrix in Eq. (17). This observation follows the same line of 

argument in discussions of conditions for weakly coupled systems. A very important 
phenomenon associated with a singularly perturbed system is the existence of so-called 
boundary layers. In going from Eq. (16) to Eq. (17) the initial condition of ( )z t  is lost 

and the values of ( )0ẑ t  and ( ) 00z t z=  are in general different; the difference is termed 
a left-side boundary layer, which corresponds to the fast transients of Eq. (16). Figure 4 
shows the boundary layer phenomenon for the fast state ( )z t . 
 
- 
- 
- 
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