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Summary 
 

Dynamic programming is a methodology for determining an optimal policy and the 
optimal cost for a multistage system with additive costs. It can be used in a deterministic 
or a stochastic environment, for a discrete time or a continuous time system, and over a 
finite time horizon or an infinite time horizon. 
 
1. An Example to Illustrate the Dynamic Programming Method 
 

 
 

Figure 1: Example to introduce the dynamic programming method. 
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To understand the essence of dynamic programming, consider the example shown in 
Figure 1. There are 11 cities, labeled A, B, ..., K, and a network of one-way roads 
connecting them. 
 
The length of each road connecting two cities is shown alongside it. It is desired to find 
the shortest path from city A to city K. 
 
The dynamic programming method solves this problem as follows. Consider cities H, I, 
and J. From each of them the shortest path to city K is shown in Figure 2. This is obvious 
since from each of them there is only one path to city K. The shortest distances from the 
cities H, I, and J to K are respectively, 5, 3, and 7, and these are shown alongside the cities 
in Figure 2. 
 

 
 

Figure 2: The shortest paths to K from H, I, and J. 
 

Now turn to cities E, F, and G. Consider city E first. There are 3 roads, one going “high” 
to H, one going “medium” to I, and the other going “low” to J. If one takes the high road 
to H, then the distance traveled to H is 4, from which point the remaining shortest distance 
to K (already computed in Figure 2) is 5, giving a total distance to K of 9; see Figure 3. If 
however one takes the “medium” road to I from E, then the distance traveled to I is 5, 
from which the shortest distance to K (from Figure 2) is 3, giving a total distance to K of 8. 
Finally, if one takes the low road from E to J, then the distance to J is 6, from which the 
remaining shortest distance to K is 7, yielding a total distance of 13. Thus the shortest path 
from E to K is via I, and this shortest distance is 8. 
 

 
 

Figure 3: Determining the shortest path from E to K. 
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In computing the shortest distance from E to K, we have thus used the following equation: 

 

Distance from Distance from Distance from
      E to H       E to I       E to J

Shortest distance Min
   from E to K

Shortest distance Shortest distance Shortest distance
    from H to K     from I to K     fr

= + + + .

om J to K

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

(1) 

 
In a similar way, we can calculate the shortest paths from F and G to K. We can determine 
that the shortest path from F to K is via I and the shortest distance is 8. Also, the shortest 
path from G to K is via J, and the shortest distance is 9. These results are shown in Figure 
4, where the shortest distance to K is shown alongside each city, and the shortest paths are 
indicated. 
 

 
 

Figure 4: The shortest paths and distances from E, F, and G. 
 
Now we turn to cities B, C, and D. Repeating the procedure, we find the shortest paths and 
distances from B, C, and D to K as shown in Figure 5.  
 

 
 

Figure 5: The shortest paths and distances from B, C, and D. 
 

 
 

Figure 6: Shortest path and distance from A. 
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Finally, repeating the procedure from node A, we determine that the shortest path from A 
to K is via C, F, and I, and the shortest distance is 16, as shown in Figure 6. 
 
There are several observations that we can make about the method we have used: 
 
(i) The cost function of interest was stage-wise additive. That is, the total distance is 

the sum of distances of each link traversed. 
(ii) In calculating the shortest paths from A to K, we have actually calculated the 

shortest path from every node A, B, C, ..., J to K, as shown in Figure 6. Technically, 
we have “embedded” our original problem of finding the shortest path from A to K 
into the family of problems of determining the shortest path from every node to K. 
Because of this property, dynamic programming is sometimes called “the method 
of invariant embedding”. 

(iii) Because we have calculated the shortest path from every node to K, dynamic 
programming can be computationally very intensive. 

(iv) We solved the problem backwards by starting at the end from nodes G, H, and I. 
Thus dynamic programming calculates optimal actions backwards in time. 

(v) In solving the problem, we have used the property that the shortest distance from 
any node to K is the minimum, over the next node that can be reached, of the 
distance to the next node plus the shortest distance from that next node to K; see 
Eq. (1). We see that if the shortest path from A to K is A → C → F → I → K, then 
the shortest path from F to K is F → I → K. More generally, we have the property 
that tail segments of optimal paths are themselves optimal. This is an example of 
what is called The Principle of Optimality. 

(vi) The recursion in Eq. (1) can be written more generally as: 
 

 
Optimal costImmediate cost

Optimal cost Min of taking action from the state .
reached by takingu in state xfrom x  Immediate action u action u in state x

⎧ ⎫
⎪ ⎪

+⎨ ⎬
= ⎪ ⎪

⎩ ⎭  

(2) 

 
            This is called the dynamic programming equation. 
(vii) Dynamic programming calculates the optimal decision from each node. That is, it 

calculates the optimal action as a function of what the current state is. For example, 
the optimal action in state G is to go low. Hence dynamic programming yields the 
optimal policy mapping states to actions. It specifies the final result as an optimal 
state feedback policy rather than as an optimal open loop policy. 

(viii) From (vii) it follows that dynamic programming can be applied for determining 
actions when the “state” of a system is known or can be observed.  

 
Armed with these observations, we can address more general situations. 

 

2. Finite Horizon Discrete Time Deterministic Systems 
 
Consider the discrete time controlled dynamic system: 
 
 ( 1) ( ( ), ( ))x t f x t u t+ =  (3) 
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where 
 
 ( ) .u t U∈  (4) 
 
The set U is called the constraint set. Consider the cost function 
 

 
0

( ( ), ( )).
T

t
c x t u t

=
∑  (5) 

 
Starting from a given initial state x(0), it is desired to determine a control policy which 
minimizes the total cost Eq. (5). The function c(x, u) is called the running cost or one-step 
cost function. The ending time T is called the terminal time. 
 
Let us define  
 
V (x, t) = optimal remaining cost when the system is in state x at time t.  

 

This function is called the optimal cost-to-go function or the value function. 
 
At time T + 1 there is no remaining cost. Hence, 

 

( , 1) 0.V x T + ≡  (6) 
 
Proceeding backwards from time T, we have the recursion:  
 

( , ) Min { ( , ) ( ( , ), 1)},u UV x t c x u V f x u t∈= + +  (7) 
 
which is a generalization of Eq. (2). (If the “Min” in Eq. (7) is not attained one uses an 
“Inf,” in which case an optimal policy does not exist, but there exists one which is 
arbitrarily close to optimal.) 
 
It can be shown by a contradiction argument that V(x, t) is indeed the optimal remaining 
“cost-to-go” from state x and time t. That is, the validity of the Principle of Optimality can 
be established. 
 
Let u(x, t) attain the “Min” in Eq. (7). It can be shown that u(x, t) is an optimal policy. It is 
expressed as a state feedback control policy. The optimal cost starting from the initial 
condition x at time 0 is V(x, 0). 
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