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Summary 
 
After recalling the definition of the Volterra series expansion and some of its 
convergence issues, we will study various methods in order to derive the Volterra 
kernels and the response to typical inputs. In particular, an algorithm, by means of 
which a large class of nonlinear systems can be analysed, is described.  
 
This algorithm is based on an algebraic approach to Volterra functional expansions 
using noncommutative generating power series; this approach allows a natural 
generalization, to the nonlinear domain, of the symbolic operational calculus of 
Heaviside, widely used in linear system theory. Moreover, it has the advantage, 
compared with the method using the multidimensional Laplace transforms, of allowing 
an easy implementation on a computer.  
 
1. Introduction  
 
The input-output behavior of  a large class of nonlinear systems can be described by the 
Volterra functional expansion  
 

2t t
1 1 1 1 2 1 2 1 2 1 20 0 0

y(t) h (t, )u( )d h (t, , )u( )u( )d d ...
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where y(t) is the circuit output and u(t) is the circuit input (assumed to be here scalar 
for simplicity sake). nh is the nth-order Volterra kernel. This expansion is a 
generalisation of the well-known convolution integral 
 

t
1 1 1 10

y(t) h (t, )u( )dτ τ τ= ∫  

 
used in linear system theory. 
 
These expansions are used in every branch of nonlinear system theory: identification 
and modeling, realization, stability, optimal control, stochastic differential equations, 
and filtering. 
 
Although the Volterra series has been successfully used in many applications, it has not 
received a great deal of attention from engineers and designers. The reason for this 
seems to be the tedious computations involved in the determination of Volterra kernels. 
The algebraic approach to nonlinear functional expansions based on noncommutative 
generating power series, offers a powerful and systematic tool for analyzing a large 
class of nonlinear systems.  
 
After recalling the definition of the Volterra series expansion and some of its 
convergence issues, we will study various methods in order to derive the Volterra 
kernels and the response to typical inputs. The analysis is then applied to the study of 
weakly nonlinear circuits in order to derive distortion rates or intermodulation products. 
 
2. Functional Representation of Nonlinear Systems 
 
2.1. Volterra Functional Series  
 
For the simplicity of presentation, we shall consider time-invariant systems. If a system 
is linear and time-invariant, then the output y(t) can be expressed as the convolution of 
the input u(t) with the system unit impulse response h(t) : 
 

y(t) h( ) u(t )dτ τ τ
∞

−∞
= −∫  (1) 

 
The system unit impulse response h(t) completely characterizes the linear time-
invariant system since, once known, the response to any input can be determined from 
(1). A system is said to be causal if the output at any given time does not depend on 
future values of the input. That is, for any time 1t , 
 

0
1 1y(t ) h( ) u(t )d 0τ τ τ

−∞
= − =∫ . 

 
This will be so if and only if  
 
h( ) 0τ = , for  0τ < . 
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The extension of (1) to nonlinear time-invariant systems with memory is the Volterra 
series  
 

0

n 1 2 n 1 2 n 1 2 n
n 1

y(t) h

h ( , ,..., )u(t )u(t ) u(t )d d dτ τ τ τ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞
=

=

+ − − −∑∫ ∫
 (2) 

 
This functional form was first studied by Volterra. Much of his work in this area is 
summarized in his book. The functions n 1 2 nh ( , ..., )τ τ τ are called the Volterra kernels of 
the system. A nonlinear system which can be represented by a Volterra series is 
completely characterized by its Volterra kernels.  
 
Also, with an argument similar to that of linear systems, it can be shown that the 
nonlinear system is causal if and only if  
 

n 1 2 nh ( , ,..., ) 0,τ τ τ =     for j 0, j 1,..., nτ < = . 
 
It is well known that, without loss of generality, the kernels can be assumed to be 
symmetric. In fact any kernel n 1 2 nh ( , ,..., )τ τ τ can be replaced by a symmetric one by 
setting 
 

1 2 n
i i i1 2 n

sym
n 1 2 n n i i i

( , ,..., ) S

1h ( , ,..., ) h ( , ,..., )
n! τ τ τ

τ τ τ τ τ τ= ∑
∈

, 

 
where S is the set of all permutations of 1 n,...,τ τ . 
 

 
 

Figure 1: An example of a nonlinear system 
 
The multiple Laplace transform L[.] of the nth-order Volterra kernel n 0> (one-sided in 
each variable) 
 

1 1 n ns s
n 1 n n 1 n 1 2 n0 0

H (s ,...,s ) h ( ,..., ) e e d d dτ ττ τ τ τ τ
∞ ∞ − −= ∫ ∫  
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 is called the nth-order transfer function. Since n 1 nh ( ,..., )τ τ is symmetric, so 
is n 1 nH (s ,...,s ) . 
 
2.2. On the Convergence of Volterra Series 
 
The Volterra series is a power series with memory. This can be seen by changing the 
input by a gain factor c so that the new input is cu(t) . By using (2), the new output is  
 

n
0 n 1 2 n 1 2 n 1 2 n

n 1
y(t) h c h ( , ,..., )u(t )u(t ) u(t )d d dτ τ τ τ τ τ τ τ τ

∞ ∞ ∞

−∞ −∞
=

= + − − −∑ ∫ ∫ , 

 
which is a power series in the amplitude factor c . It is a series with memory since the 
integrals are convolutions. As a consequence of its power series character, there are 
some limitations associated with the application of the Volterra series to nonlinear 
problems. One major limitation is the convergence of this series.  
 
In order to illustrate  this let us consider the system of Figure 1 where the system L is a 
linear system with the unit impulse response h(t)     
 

z(t) h( ) u(t )dτ τ τ
∞

−∞
= −∫  (3) 

 
and the system N is a nonlinear no-memory system with the input-output relation 
 

2
z(t)y(t) N[z(t)]

1 z (t)
= =

+
. 

 
The Taylor series expansion of this expression is  
 

n 2n 1

n 0
y(t) ( 1) [z(t)]

∞
+

=
= −∑  (4) 

 
which converges only for 2z (t) 1< . The Volterra series representation of the overall 
system T is now easily derived by substituting (3) for (4) to obtain 
 

2n 1
n

n 0
y(t) ( 1) h( )u(t )dτ τ τ

+∞ ∞

−∞
=

⎡ ⎤= − −⎢ ⎥⎣ ⎦∑ ∫ , 

 
in which the Volterra kernels are 
 

n
2n 1 1 2n 1 1 2 2n 1h ( ,..., ) ( 1) h( )h( )...h( )τ τ τ τ τ+ + += −  

 
and 
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2n 1 2nh ( ,..., ) 0, n 0τ τ = ≥ . 
 
Since the Taylor series converges only for 2z (t) 1< , the above Volterra series will 
diverge at those times for which| z(t) | 1≥ . The Volterra series thus is valid only for the 
class of inputs u(t) for which the amplitude of z(t) is less than one.  
 
Now let N be replaced by the following nonlinear no-memory system 
 
y(t) Esign[z(t)]= . 
 
Clearly, the system T cannot be represented by a Volterra series. It is therefore evident 
that generally many types of nonlinear systems, such as those that include saturating 
elements, cannot be characterized by a Volterra series that converges for all inputs.  
 
Under certain conditions, a functional y(t) T[x(t)]= can be approximated to any desired 
degree of accuracy by a finite series of the form of equation (2). Such a functional is 
called continuous. In particular it is easy to show that the functional relation between the 
solution (output) and the forcing function (input) of a nonlinear differential equation 
with constant coefficients which satisfies the Lipschitz conditions is continuous.  
 
If T[x(t)] can exactly be represented by a converging infinite series of the form of 
equation (2), it is called analytic or weak. Conditions for convergence are discussed by 
Volterra and Brillant. Brillant also notes that two special types of systems, for which the 
functional relation between input and output is analytic, are a linear system and a 
nonlinear no-memory systems with a power series relation between input and output. 
He then shows that various combinations such as cascading, adding, or multiplying such 
systems results in an analytic system. 
 
In practice, most of the analogue circuits used in communication systems, such as 
modulators, mixers, amplifiers, harmonic oscillators, etc…, are of a weak nature and 
therefore analysed and designed in the frequency domain. For such weakly nonlinear 
circuits (having, say, distortion components of 20dB or more below the fundamental 
one), the Volterra series technique can be readily used in the frequency domain to obtain 
results both quantitatively and qualitatively. 
 
Given an input-output map described by a nonlinear control system x f (x,u)= and a 
nonlinear output y h(x)= , there exists simple means for obtaining a series 
representation of the output y(t) in terms of the input u(t) . When the control enters 
linearly, x f (x) ug(x)= + , the method yields the existence of a Volterra series 
representation.  
 
3. Recursive Computation of the Kernels 
 
Several methods have been developed in the literature for determining the kernels or the 
associated transfer functions. 
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Among them, the method of exponential inputs is particularly used. After recalling this 
method we describe a differential geometry approach and an algebraic approach based 
on generating power series when the system is described by a set of differential 
equations. We shall see that the algebraic approach has the advantage of being easily 
implementable on a computer by using algebraic computing software.  
 
3.1. Exponential Input Method 
 
Let us consider the Volterra series expansion of a nonlinear system of the form 
 

1 nt t
n 1 2 n 1 2 n 1 2 n0 0

n 1
y(t) h ( , ,..., )u(t )u(t ) u(t )d d dτ τ τ τ τ τ τ τ τ

∞

=
= − − −∑∫ ∫ . (5) 

 
Let the input u(t) be a sum of exponentials  
 

1 2 ks t s t s tu(t) e e e= + + + , 
 
where 1 2 ks ,s ,...,s are rationally independent. This means that there are no rational 
numbers 1 2 k, ,...,α α α  such that the sum 1 1 2 2 k ks s sα α α+ + is rational. Then (5) 
becomes 
 

k k1 n
1 n

1 n

k k (s s )t
n k k

n 1 k 1 k 1
y(t) H (s ,...,s )e

∞ + +

= = =

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∑ ∑ . (6) 

      
If each is occurs in 

1 nk k i(s ,...,s ), m times, then there are  

 

1 2 k

n!
m !m ! m !

 

 
identical terms in the expression between brackets. Thus (5) can be written in the form  
 

k k )t1 n
1 n

(s s
n k k

1 2 kn 1 m

n!y(t) H (s ,...,s )e
m !m ! m !

∞ + +

=
= ∑∑ , (7) 

 
where m under the summation sign indicates that the sum includes all the distinct 
vectors 1 k(m ,...,m )  such that k

ii 1m n= =∑ . Note that if 1 2 km m m 1= = = = then the 

amplitude associated with the exponential component k k )t1 n
(s s

e
+ +

is 
simply k 1 kk!H (s ,...,s ) . 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Volterra and Fliess Series Expansion - Françoise 
Lamnabhi-Lagarrigue 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 2: A simple nonlinear circuit 
 
This suggests a recursive procedure for determining all the nonlinear transfer functions 
from the behavior of a system. 
 
Let us apply the method to the simple nonlinear circuit of Figure 2 consisting of a 
capacitor, a linear resistor and a nonlinear resistor in parallel with the current source i(t) . 
 
The nonlinear differential equation relating the current excitation i(t) and the voltage 
v(t) across the capacitor is given by 
 

2
1 2v k v k v i+ + =  (8) 

 
Let sti(t) e= . Equating the coefficients of ste on both sides of (8) after the substitution of 
(7) for v(t) we get 
 

1
1

1H (s)
s k

=
+

. 

 
In order to determine 2 1 2H (s ,s ) let us take 1 2s t s ti(t) e e= + and identify the coefficient 

of the term 1 2(s s )t2!e +  after the substitution of (7)for v(t) in both sides of (8). We 
obtain 2 1 2H (s ,s ) in term of 1H (s) as follows 
 

2 1 2 2 1 1 1 2 1 1 2H (s ,s ) k H (s )H (s )H (s s )= − + . 
 
Similarly the third-order transfer function is obtained by injecting a sum of three 
exponentials inputs 
 

31 2 s ts t s ti(t) e e e= + + . 
 
It follows 
 

3 1 2 3 2 1 2 1 3 2 2 3 1 1 2 1 3 1 2 1 1 2 3
2H (s ,s ,s ) [H (s ,s )H (s ) H (s ,s )H (s ) H (s ,s )H (s )]H (s s s )
3

= − + + + +
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Repeating this process indefinitely gives higher order nonlinear transfer functions in 
terms of lower-order nonlinear transfer functions.  
 
- 
- 
- 
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