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Summary 
 
The problem of nonlinear output regulation is examined. It is shown that the solvability 
of the problem amounts to the solvability of a set of partial differential equations. The 
notion of immersion and the internal model principle are presented.   
 
1. The Problem of Output Regulation 
 
One of the most relevant problems in control theory is to force via feedback a system to 
achieve a prescribed steady-state response under the action of every external command 
in a given family. In this typology fit problems such as that of obtaining a controlled 
output ( )y t  to asymptotically track a reference function of time ( )refy t  belonging to an 
assigned class of signals as well as the problem of asymptotically rejecting the effect on 
the output ( )y t  of a disturbance ( )w t  ranging over a certain family of disturbances. In 
both cases the problem boils down to have the tracking error  
 

( ) ( ) ( )refe t y t y t= − ,  
 
that is the discrepancy between the controlled output and the reference signal, decay to 
zero as time goes by for every reference output and any disturbance in some given 
family of functions.  
 
The problem in question can be formalized in the following way. Consider the dynamics 
of a process described by nonlinear equations  
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( , , ) ,x f x w u=         (1) 

 
where ( )x t  is the state of the process ranging over a neighborhood U  of the origin 

in n , ( )u t  is a control input taking on values in m  and ( ) rw t ∈  is an exogenous 
vector-valued signal which includes references to be tracked and/or disturbances to be 
rejected. In addition to the process dynamics we consider the equation  
 

( )e h x w= ,          (2) 
 
expressing the error variable ( ) me t ∈ . Functions ( )f x w u, ,  and ( )h x w,  are assumed 
to be smooth and to satisfy the conditions (0 0 0) 0f , , =  and (0 0) 0h , = .  
 
The family of exogenous signals ( )w t  that act on the process, is obtained by 
considering all the solutions of a (possibly nonlinear) homogeneous differential 
equation  
 

( )w s w=          (3) 
 
as the initial condition (0)w  ranges over a neighborhood W  of the origin in r . This 
system, which is interpreted as a generator of all possible exogenous inputs, is called an 
exosystem.  
 
It is assumed that function ( )s w  is smooth and such that (0) 0s = , and hence, recalling 
an analogous hypothesis introduced earlier on the functions defining the plant and the 
error equation, the combined system (1), (3) with 0u =  has an equilibrium state 
( ) (0 0)x w, = , , at which the error is zero.  
 
The property of output regulation is the property of the controlled system for which the 
tracking error ( )e t  converges to zero as t  goes to infinity despite of the action of 
exogenous signals. This property is particularly meaningful, when the exogenous 
signals are “persistent" in time, that is, no exogenous signal decays to zero as time tends 
to infinity. This happens, for instance, for any periodic (and bounded) function of time. 
In these cases, in fact, the system may exhibit a “steady-state response" that is itself a 
persistent function of time, and whose characteristics depend entirely on the specific 
input imposed on the system and not on the initial conditions of the system. To ensure 
that the exogenous inputs generated by the exosystem (3) are bounded, it is enough to 
assume that the point 0w =  is a Lyapunov stable equilibrium of ( )s w  and to choose the 
initial condition (0)w  sufficiently close to the origin, namely in some suitable 

neighborhood 0W W⊂  of the origin. In order to guarantee the “persistency property" of 
the exogenous signals, it is useful to assume that every point w  in 0W  is Poisson 
stable. Indeed, by definition, this is equivalent to say that every exogenous signal which 
originates from w , i.e. every exogenous signal ( )w t  which is a solution of ( )w s w=  
and satisfies the initial condition (0)w w= , passes arbitrarily close to w  for arbitrarily 
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large values of time (in both forward and backward directions), and hence cannot decay 
to zero as time goes to infinity.  
 
The two properties that the map ( )s w  admits a Lyapunov stable equilibrium point at 

0w =  and that there exists a neighborhood of Poisson stable points around 0w =  will 
be together referred as to the neutral stability property.  
 
Remark.  A necessary condition for the neutral stability property to hold is that the 
matrix defining the linear approximation of ( )s w  at 0w = , i.e. matrix  
 

0w

sS
w =

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 

 
has all its eigenvalues on the imaginary axis.   
 
The control action to system (1) is to be provided by a feedback controller, which 
processes the information originated from the process to generate the appropriate 
control action. The structure of the feedback controller depends on the information 
pattern available for feedback. There are two possible situations. The most favorable 
one from the viewpoint of feedback design occurs when all the components of the state 
variable x  and of the exogenous input w  are available for measurements. In this case, 
the controller is said to have access to full information, and it can be constructed as a 
memoryless feedback, whose output u  is a function of the states x  and w  of the 
process and, respectively, of the exosystem, that is  
 

( )u x w= α ,          (4) 
 
with ( )x wα ,  smooth and satisfying (0 0) 0α , = .  
 
A more realistic, and rather common, situation is the one in which the set of measured 
variables includes only the components of the tracking error e . If this is the case, the 
controller is said to have access to error feedback, and it is convenient to synthesize the 
control signal by means of a dynamic nonlinear system of the form  
 

( )
( )

e
u
ξ = η ξ,

= θ ξ ,
         (5) 

 
where ξ  is the internal state defined in a neighborhood Ξ  of the origin of ν , ν  is an 
appropriate positive integer, and ( )eη ξ, , ( )θ ξ  are smooth functions which are zero at 
( ) (0 0)eξ, = ,  and 0ξ = , respectively.  
 
In the case of full information, the interconnection of system (1), (3) with controller (4) 
yields a closed-loop system described by the equations  
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( ( ))
( )

x f x w x w
w s w

= , ,α ,
= ,

       (6) 

 
for which the point ( ) (0 0)x w, = ,  is an equilibrium, whereas in the case of error 
feedback, the interconnection of (1), (2), (3) with (5) yields the closed-loop system  
 

( ( ))
( ( ))

( )

x f x w
h x w

w s w

= , ,θ ξ
ξ = η ξ, ,

= ,
        (7) 

 
for which the point ( ) (0 0 0)x w, ,ξ = , ,  is an equilibrium.  
 
If the exosystem is neutrally stable and system  
 

( 0 ( 0))x f x x= , ,α ,         (8) 
 
is asymptotically stable in the first approximation, then the response of the closed-loop 
system (6) converges – from any initial condition ( (0) (0))x w,  in a suitable 
neighborhood of the origin (0 0),  – to a well-defined steady-state response as time goes 
to infinity, and this steady-state response depends only on (0)w  and not on (0)x . If, 
additionally, the steady-state response is such that the corresponding error tracking is 
identically zero, then the closed-loop system has the desired property of output 
regulation. This motivates the following definition.  
 
Full Information Output Regulation Problem Given a process described by nonlinear 
equations of the form (1) and a neutrally stable exosystem of the form (3), find, if 
possible, a mapping ( )x wα ,  for which:  
 
( FIS ) The equilibrium 0x =  of (8) is asymptotically stable in the first approximation.  
 
( FIR ) There exists a neighborhood V U W⊂ ×  of ( ) (0 0)x w, = ,  such that, for each 
initial condition ( (0) (0))x w,  in V , the solution of (6) satisfies  
 
lim ( ( ) ( )) 0
t

h x t w t
→∞

, = .  

 
Analogously, if the exosystem is neutrally stable and system  
 

( 0 ( ))
( ( 0))

x f x
h x

= , ,θ ξ
ξ = η ξ, ,

        (9) 

 
is asymptotically stable in the first approximation, then the response of the closed-loop 
system (7) converges – from any initial condition ( (0) (0) (0))x w,ξ ,  in a suitable 
neighborhood of the origin (0 0 0), ,  – to a well-defined steady-state response as time 
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goes to infinity, and this steady-state response depends only on (0)w  and not on 
( (0) (0))x ,ξ . If, additionally, the steady-state response is such that the corresponding 
error tracking is identically zero, then the closed-loop system has the desired property of 
output regulation.  
 
Error Feedback Output Regulation Problem Given a process described by nonlinear 
equations of the form (1) and a neutrally stable exosystem of the form (3), find, if 
possible, an integer ν  and two mappings ( )eη ξ, , ( )θ ξ  for which:  
 
( EFS ) The equilibrium ( ) (0 0)x,ξ = ,  of (9) is asymptotically stable in the first 
approximation.  
 
( EFR ) There exists a neighborhood V U W⊂ ×Ξ×  of ( ) (0 0 0)x w,ξ, = , ,  such that, for 
each initial condition ( (0) (0) (0))x w,ξ ,  in V , the solution of (7) satisfies  
 
lim ( ( ) ( )) 0
t

h x t w t
→∞

, = .  

 
The requirements of asymptotic stability in the first approximation listed in the 
formulation of the two output regulation problems clearly demand properties of 
stabilizability and detectability of the linear approximation at the origin of the closed-
loop systems. In order to make this precise, one can rewrite the controlled system (6) as  
 

( ) ( ) ( )
( )

x A BK x P BL w x w
w Sw w

= + + + + φ ,
= +ψ ,

     (10) 

 
having denoted with ( )x wφ ,  and ( )wψ  higher order terms which vanish at the origin 
along with their first-order derivatives, and with A B P K L S, , , , ,  the following matrices:  
 

( ) (0 0 0) ( ) (0 0 0) ( ) (0 0 0)

( ) (0 0) ( ) (0 0) 0

x w u x w u x w u

x w x w x

f f fA B P
x u w

sK L S
x w w

, , = , , , , = , , , , = , ,

, = , , = , =

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂α ∂α ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Equation (10) shows how requirement ( FIS ) is fulfilled if and only of the Jacobian 
matrix at 0x =  of system (8), i.e. matrix  
 

FIJ A BK= + ,  
 
has all its eigenvalues in the left-half plane.  
 
On the other hand, the closed-loop system in the case of error feedback (7) can be 
rewritten as  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XIII - Nonlinear Output Regulation - Alberto Isidoro and 
Claudio De Persis 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

( )
( )

( )

x Ax BH Pw x w
F GCx GQw x w

w Sw w

= + ξ + + φ ,ξ,
ξ = ξ + + + χ ,ξ,

= +ψ ,
 (11) 

 
where ( )x wφ ,ξ,  and ( )wψ  represent higher order terms which vanish at the origin 
along with their first-order derivatives, A B P, , are the matrices introduced above, while 
C Q F H G, , , ,  are matrices defined as follows  
 

( ) (0 0) ( ) (0 0)

( ) (0 0)( ) (0 0) 0

x w x w

ee

h hC Q
x w

F G H
e

θ
, = , , = ,

ξ, = ,ξ, = , ξ=

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂η ∂θ ∂⎛ ⎞= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟∂ξ ∂ ∂ξ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Even in this case it is immediate to realize that requirement ( EFS ) is fulfilled if and only 
of the Jacobian matrix at ( ) (0 0)x,ξ = ,  of system (9), i.e. matrix  
 

EF
A BH

J
GC F
⎛ ⎞

= ,⎜ ⎟
⎝ ⎠

 

 
has all its eigenvalues in the left-half plane.  
 
From the theory of linear systems it is then easily concluded that requirement ( FIS ) can 
be achieved only if the pair of matrices ( )A B,  is stabilizable (i.e. there exists a matrix 
K  such that A BK+  has all its eigenvalues in the left-half plane), while requirement 
( EFS ) can be achieved only if the pair of matrices ( )C A,  is detectable (i.e. there exists a 
matrix G  such that A GC+  has all its eigenvalues in the left-half plane). These 
properties of the linear approximation of the process (1), (3) at ( ) (0 0 0)x u w, , = , ,  are 
indeed necessary conditions for the solvability of the problem of output regulation.  
 
- 
- 
- 
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