
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

MODELING OF DISCRETE EVENT SYSTEMS

Stéphane Lafortune
The University of Michigan, USA

Keywords: Automaton, observer, parallel composition, Petri net, process algebra,
product, regular languages.

Contents

1. Introduction
1.1. Formal Languages
2. Automata
2.1. Basic Concepts
2.2. Languages Represented by Automata
2.2.1. Blocking: Deadlock and Livelock
2.3. Accessibility Properties
2.4. Nondeterministic Automata
3. Operations on Automata
3.1. Product and Parallel Composition
3.2. Example: Two Users of Two Common Resources
3.3. Observer Automata
4. Regular Languages and Finite-state Automata
5. Petri Nets
5.1. Petri Net Languages
5.2. Matrix Algebra and Petri Net Dynamics
5.3. Composition of Petri Nets
6. Process Algebras
7. Discussion on Timed Models
Glossary
Bibliography
Biographical Sketch

Summary

The modeling formalism of automata is considered and the manipulation of automata
for the construction of complete system models from individual component models is
discussed. These manipulations include the operations of product and parallel
composition. The notion of blocking in the context of language models and automaton
models is presented. Blocking captures the phenomena of deadlock and livelock that
can occur in the behavior of discrete event systems. An algorithm for the construction of
observer automata from automata with unobservable transitions is presented. The
modeling formalisms of Petri nets and communicating sequential processes are also
treated and contrasted to automata in the context of a simple resource sharing example.

1. Introduction

Discrete event systems are dynamic systems with discrete state spaces and event-driven

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

dynamics. The area of discrete event systems is multidisciplinary and involves concepts
and techniques from computer science theory, control theory, and operations research.
A wide variety of modeling formalisms is being used to describe and study the behavior
of discrete event systems. Two widely-used modeling formalisms in control engineering
are automata and Petri nets. A lot of progress has been made in the last two decades in
the development of a control theory for discrete event systems modeled as automata or
Petri nets. For this reason, these are the formalisms discussed in this chapter; in
addition, a brief discussion of communicating sequential processes is given in Section 6.

Discrete event models of dynamic systems are classified in terms of how they abstract
timing information and randomness in the system behavior. Untimed models abstract
away precise timing issues by focusing only on the ordering of the events and not on the
exact times of their occurrence. Untimed models also abstract away statistical
information about the probabilities of the events and consider all possible “sample
paths” in the system behavior. Untimed models are often referred to as “logical”
models. Timed models enrich untimed models and explicitly include timing
information. This information may be provided in a “deterministic” manner or in a
“stochastic” manner. The process of model refinement from untimed automata to
stochastic timed automata and their associated generalized semi-Markov stochastic
processes are discussed in Discrete Event Systems.

This chapter explores in further depth discrete-event modeling by building on the
discussion in Discrete Event Systems. The primary focus of this chapter is untimed
models of discrete event systems. Deterministic and stochastic timed models are briefly
discussed in Discrete Event Systems; stochastic timed models are also considered in
Sample Path Analysis of Discrete Event Dynamic Systems.

1.1. Formal Languages

The concept of language is introduced in Discrete Event Systems for modeling the
logical behavior of a discrete event system. An untimed language, or simply language,
is a set of strings of events over an event set. Let E be the finite set of events (or
“alphabet”) associated with the discrete event system under consideration. This set
consists of all the events that can possibly be executed by the system. A string (or trace)
is a finite sequence of events from E . The length of a string s , denoted by s| | , is a
non-negative integer corresponding to the number of events composing the string,
counting multiple occurrences of the same event. The empty string, denoted by ε (not
to be confused with the generic event e E∈), is the string containing no events, i.e.,

0ε| |= . The concatenation of two strings 1s and 2s is the trace 1 2s s (i.e., 1s followed by

2s). Thus the empty string ε can be interpreted as the identity element for
concatenation.

Denote by E∗ the set of all finite strings of elements of E , including the empty string
ε ; the * operation is called the Kleene closure. For example, if { }E a b c= , , , then

{ }E a b c aa ab ac ba bb bc ca cb cc aaa …ε∗ = , , , , , , , , , , , , , , .

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

A language is then formally defined as a subset of E∗ . If s t s′ = with s s t E∗′, , ∈ , then
s′ is called a prefix of s and t a suffix of s . Both ε and s are prefixes of s , by
definition.

The usual set operations, such as union, intersection, difference, and complement (with
respect to E∗) are applicable to languages since languages are sets. In addition, consider
the following operations (“:=” denotes “equal to by definition”):

• Concatenation: Let 1 2L L E∗, ⊆ , then

{ }1 2 1 2 1 1 2 2() () ()L L s E s s s s L s L∗:= ∈ : = ∧ ∈ ∧ ∈ .

• Prefix-closure: Let L E∗⊆ , then

{ }()L s E t E st L∗ ∗:= ∈ : ∃ ∈ ∈ .

Thus the prefix-closure L of L is the language consisting of all the prefixes of all the
strings in L . In general, L L⊆ . L is said to be prefix-closed if L L= .

2. Automata

2.1. Basic Concepts

The automaton modeling formalism is introduced in Discrete Event Systems. For the
sake of completeness, the definition of an automaton is recalled.

Automaton: A deterministic automaton, denoted by G , is a six-tuple

0()mG X E f x X= , , ,Γ, ,

where: X is the set of states, which could be infinite; E is the finite set of events
associated with the transitions in G ; f X E X: × → is the transition function:

()f x e y, = means that there is a transition labeled by event e from state x to state y
(in general, f is a partial function on its domain); 2EXΓ : → is the feasible event
function: ()xΓ is the set of all events e for which ()f x e, is defined; 0x is the initial
state; mX X⊆ is the set of marked states. (Given a set A , the notation 2A means the
power set of A , i.e., the set of all subsets of A .) Proper selection of which states to
mark is a modeling issue that depends on the problem of interest. By designating certain
states as marked, we may for instance be recording that the system, upon entering these
states, has completed some operation or task (cf. example in Section 3.2).

It is convenient to represent graphically automata where X| | is finite and small by
means of their state transition diagrams. The state transition diagram of an automaton is
a directed graph where nodes represent states and labeled arcs between nodes are used

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

to represent the transition function f : if ()f x e y, = , then an arc labeled by “ e ” is
drawn from x to y . Special notation is used to identify the initial states and marked
states. In Figs. 2-4 below, the initial state is identified by an arrow pointing into it and
marked states are differentiated by means of a double circle or box.

For the sake of convenience, the transition function f of an automaton is extended
from domain X E× to domain X E∗× in the following recursive manner:

()
() (()) for and
f x x

f x se f f x s e s E e E
ε

∗

, :=

, := , , ∈ ∈ .

2.2. Languages Represented by Automata

Automata are used to represent and manipulate languages. The language generated by

0()mG X E f x X= , , ,Γ, , is

0() { () is defined }L G s E f x s∗:= ∈ : , .

The language marked by G is

0() { () () }m mL G s L G f x s X:= ∈ : , ∈ .

The language ()L G represents all the directed paths that can be followed along the state
transition diagram of G , starting at the initial state; the string corresponding to a path is
the concatenation of the event labels of the transitions composing the path. Therefore, a
string s is in ()L G if and only if it corresponds to an admissible path in the state
transition diagram, equivalently, if and only if f is defined at 0()x s, . ()L G is prefix-
closed by definition, since a path is only possible if all its prefixes are also possible. If
f is a total function over its domain, then necessarily ()L G E∗= .

The second language represented by G , ()mL G , is the subset of ()L G consisting only
of the strings s for which 0() mf x s X, ∈ , i.e., these strings correspond to paths that end
at a marked state in the state transition diagram. Since not all states of X need be
marked, the language marked by G , ()mL G , need not be prefix-closed in general. The
language marked is also called the language recognized by the automaton, and the given
automaton is often referred to as a recognizer of the given language.

An automaton G thus represents two languages: ()L G and ()mL G . In the standard
definition of automaton in automata theory, the function f is required to be a total
function and the notion of language generated is not meaningful since it is always equal
to E∗ . Allowing f to be partial is a consequence of the fact that a discrete event system
may not be able to produce (or execute) all strings in E∗ .

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

2.2.1. Blocking: Deadlock and Livelock

The definitions of G , ()L G , and ()mL G imply that in general

() () ()m mL G L G L G⊆ ⊆ ,

since mX may be a proper subset of X . It is worth examining the second set inclusion
in more detail.

An automaton G could reach a state x where ()xΓ =∅ but mx X∉ . This is called a
deadlock because no further event can be executed. Given the interpretation of marking,
this means that the system “blocks” because it enters a deadlock state without having
terminated the task at hand. If deadlock happens, then necessarily ()mL G will be a
proper subset of ()L G , since any string in ()L G that ends at state x cannot be a prefix
of a string in ()mL G .

Another issue to consider is when there is a set of unmarked states in G that forms a
strongly connected component (i.e., these states are reachable from one another), but
with no transition going out of the set. If the system enters this set of states, then
livelock results. While the system is “live” in the sense that it can always execute an
event, it can never complete the task started since no state in the set is marked and the
system cannot leave this set of states. If livelock is possible, then again ()mL G will be a
proper subset of ()L G . Any string in ()L G that reaches such an “absorbing” set of
unmarked states cannot be a prefix of a string in ()mL G , since it is assumed that there is
no way out of this set. Again, the system is “blocked” in the livelock. The importance of
deadlock and livelock in discrete event systems leads to the following definition.

Blocking: Automaton G is said to be blocking if () ()mL G L G⊂ , where the set

inclusion is proper, and nonblocking when () ()mL G L G= . Thus, if an automaton is
blocking, this means that deadlock and/or livelock can happen.

The notion of marked states and the definitions of language generated, language
marked, and blocking, provide an approach for considering deadlock and livelock that is
useful in a wide variety of applications.

2.3. Accessibility Properties

From the definitions of ()L G and ()mL G , all the states of G that are not accessible or
reachable from 0x by some string in ()L G can be deleted without affecting the
languages generated and marked by G . When “deleting” a state, all the transitions that
are attached to that state are also deleted. This operation is denoted by ()Ac G , where
Ac stands for taking the “accessible” part.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

A state x of G is said to be coaccessible to mX , or simply coaccessible, if there is a
path in the state transition diagram of G from x to a marked state. The operation of
deleting all the states of G that are not coaccessible is denoted by ()CoAc G , where
CoAc stands for taking the “coaccessible” part. Taking the coaccessible part of an
automaton means building

{ }
0

0 0
0

() () where

(())

if
undefined otherwise

coac coac

coac coac coac m

coac m

coac
coac

coac X E X

CoAc G X E f x X

X x X s E f x s X

x x X
x

f f

,

∗

,

× →

:= , , , ,

= ∈ : ∃ ∈ , ∈

∈⎧
= ⎨
⎩

= | ,

where the notation

coac coacX E Xf × →| means the restriction of function f to domain

coacX E× . The CoAc operation may shrink ()L G , since states that are accessible from

0x may be deleted; however, the CoAc operation does not affect ()mL G , since any
deleted state is not on any path from 0x to mX . If ()G CoAc G= , then G is said to be

coaccessible; in this case, () ()mL G L G= . Coaccessibility is closely related to the

concept of blocking. Blocking necessarily means that ()mL G is a proper subset of ()L G
in which case there are accessible states that are not coaccessible.

Note that if the CoAc operation results in coacX =∅ (this would happen if mX =∅ for
instance), then the empty automaton is obtained. The term “empty automaton” refers to
an automaton whose state space is empty; an empty automaton necessarily generates
and marks the empty set.

An automaton that is both accessible and coaccessible is said to be trim. The Trim
operation is defined as follows:

() [()] [()]Trim G CoAc Ac G Ac CoAc G:= =

where the commutativity of Ac and CoAc is easily verified.

2.4. Nondeterministic Automata

In the definition of automaton, state transitions describe how an event e causes a
transition from some state x to a unique new state y . Suppose, however, that an event
e at state x may cause transitions to more than one new states. This is a useful manner
of modeling randomness in the system behavior. In this case, ()f x e, should no longer
represent a specific new state x X∈ , but rather a set of possible new states. In addition,
let the label ε be allowed in the state transition diagram of an automaton, i.e., allow
transitions between distinct states to have the empty string as label. These transitions
may represent events that cause a change in the “internal” state of the system but are not
“observable” by an outside observer – imagine that there is no sensor that records this
state transition. Thus the outside observer cannot attach an event label to such a

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

transition but it recognizes that the transition may occur by using the ε label. These two
changes lead to the notion of a nondeterministic automaton.

Nondeterministic automaton: A nondeterministic automaton, denoted by ndG , is a
six-tuple

0({ })nd nd mG X E f x Xε= , ∪ , ,Γ, ,

where these objects have the same interpretation as in the definition of deterministic
automaton, with the two differences that:

1. ndf is a function ({ }) 2X
ndf X E ε: × ∪ → , i.e., ()ndf x e X, ⊆ whenever it is

defined.
2. The initial state may itself be a set of states, i.e., 0x X⊆ .

3. Operations on Automata

Discrete event models of complex dynamic systems are rarely built in a monolithic
manner. Instead, a modular approach is used where models of individual components
are built first, followed by the composition of these models in order to obtain the model
of the overall system. The synchronization, or coupling, between components can be
captured by the use of common events between system components. Namely, if
components A and B share event c , then event c should only occur if both A and B
execute it. The process of composing individual automata (that model interacting
system components) in a manner that captures the synchronization constraints imposed
by their common events is formalized by the product and parallel composition
operations that are studied in this section.

-
-
-

TO ACCESS ALL THE 24 PAGES OF THIS CHAPTER,

Click here

Bibliography

Alur R. and Dill, D.L. (1994). A Theory of Timed Automata. Theoretical Computer Science. 126, pp. 183–
235. [This paper presents a timed discrete-event modeling formalism that has been studied extensively in
the computer science literature.]

Arnold A.(1994). Finite transition systems. International Series in Computer Science. Prentice-Hall. [A
more advanced book on untimed modeling of discrete event systems.]

Cassandras C.G. and Lafortune S. (1999). Introduction to Discrete Event Systems. Kluwer Academic
Publishers. [Chapters 2 and 4 of this textbook on discrete event systems present a detailed coverage of
automata and Petri net models.]

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-27-01

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

David R. and Alla H. (1992). Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems.
Prentice-Hall. [A nice textbook on Petri net models and their connection with Grafcet, a programming
method for programmable logic controllers (PLCs), which are widely-used in industrial automation.]

Harel D. and Politi M. (1998). Modeling Reactive Systems with Statecharts: The Statemate Approach.
Wiley. [This book describes a class of hierarchical automaton models that has become popular in
commercial software packages for modeling discrete-event dynamics.]

Hoare C.A.R. (1985). Communicating Sequential Processes. International Series in Computer Science.
Englewood Cliffs, NJ, Prentice-Hall. [A textbook treatment of the modeling formalism of communicating
sequential processes.]

Hopcroft J.E. and Ullman J.D. (1979). Introduction to Automata Theory, Languages, and Computation.
Reading, MA, Addison-Wesley. [A classic textbook on automata and language theory.]

Kurshan R.P. (1994). Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press. [A book on a class of automaton models in the context of formal
verification.]

Manna Z. and Pnueli A. (1992). The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag. [This book describes the use of temporal logic in the specification and verification of
timed discrete event systems.]

Murata T. (1989). Petri Nets: Properties, Analysis, and Applications. PIEEE, Vol. 77, 4, Apr, pp.541–
580. [An excellent tutorial/survey paper on Petri net models.]

Biographical Sketch

Stéphane Lafortune received the B. Eng degree from École Polytechnique de Montréal in 1980, the M.
Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at
Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of
Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr.
Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the
Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and
in 2001 (for a paper co-authored with G. Barrett). Dr. Lafortune was a member of the Editorial Board of
the Journal of Discrete Event Dynamic Systems: Theory and Applications in the period 1993-2000. He
was Associate Editor at Large (1996-1999) and Associate Editor (1993-1996) of the IEEE Transactions
on Automatic Control. His research interests are in discrete event systems, intelligent transportation
systems, and communication networks. He co-authored, with C. Cassandras, the textbook Introduction to
Discrete Event Systems (Kluwer Academic Publishers, 1999). Recent publications are available at the
Web site www.eecs.umich.edu/umdes.

