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Summary 
 
The modeling formalism of automata is considered and the manipulation of automata 
for the construction of complete system models from individual component models is 
discussed. These manipulations include the operations of product and parallel 
composition. The notion of blocking in the context of language models and automaton 
models is presented. Blocking captures the phenomena of deadlock and livelock that 
can occur in the behavior of discrete event systems. An algorithm for the construction of 
observer automata from automata with unobservable transitions is presented. The 
modeling formalisms of Petri nets and communicating sequential processes are also 
treated and contrasted to automata in the context of a simple resource sharing example.  
 
1. Introduction 
 
Discrete event systems are dynamic systems with discrete state spaces and event-driven 
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dynamics. The area of discrete event systems is multidisciplinary and involves concepts 
and techniques from computer science theory, control theory, and operations research. 
A wide variety of modeling formalisms is being used to describe and study the behavior 
of discrete event systems. Two widely-used modeling formalisms in control engineering 
are automata and Petri nets. A lot of progress has been made in the last two decades in 
the development of a control theory for discrete event systems modeled as automata or 
Petri nets. For this reason, these are the formalisms discussed in this chapter; in 
addition, a brief discussion of communicating sequential processes is given in Section 6.  
 
Discrete event models of dynamic systems are classified in terms of how they abstract 
timing information and randomness in the system behavior. Untimed models abstract 
away precise timing issues by focusing only on the ordering of the events and not on the 
exact times of their occurrence. Untimed models also abstract away statistical 
information about the probabilities of the events and consider all possible “sample 
paths” in the system behavior. Untimed models are often referred to as “logical” 
models. Timed models enrich untimed models and explicitly include timing 
information. This information may be provided in a “deterministic” manner or in a 
“stochastic” manner. The process of model refinement from untimed automata to 
stochastic timed automata and their associated generalized semi-Markov stochastic 
processes are discussed in Discrete Event Systems.  
 
This chapter explores in further depth discrete-event modeling by building on the 
discussion in Discrete Event Systems. The primary focus of this chapter is untimed 
models of discrete event systems. Deterministic and stochastic timed models are briefly 
discussed in Discrete Event Systems; stochastic timed models are also considered in 
Sample Path Analysis of Discrete Event Dynamic Systems.  
 
1.1. Formal Languages 
 
The concept of language is introduced in Discrete Event Systems for modeling the 
logical behavior of a discrete event system. An untimed language, or simply language, 
is a set of strings of events over an event set. Let E  be the finite set of events (or 
“alphabet”) associated with the discrete event system under consideration. This set 
consists of all the events that can possibly be executed by the system. A string (or trace) 
is a finite sequence of events from E . The length of a string s , denoted by s| | , is a 
non-negative integer corresponding to the number of events composing the string, 
counting multiple occurrences of the same event. The empty string, denoted by ε  (not 
to be confused with the generic event e E∈ ), is the string containing no events, i.e., 

0ε| |= . The concatenation of two strings 1s  and 2s  is the trace 1 2s s  (i.e., 1s  followed by 

2s ). Thus the empty string ε  can be interpreted as the identity element for 
concatenation.  
 
Denote by E∗  the set of all finite strings of elements of E , including the empty string 
ε ; the * operation is called the Kleene closure. For example, if { }E a b c= , , , then  
 

{ }E a b c aa ab ac ba bb bc ca cb cc aaa …ε∗ = , , , , , , , , , , , , , , .  
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A language is then formally defined as a subset of E∗ . If s t s′ =  with s s t E∗′, , ∈ , then 
s′  is called a prefix of s  and t  a suffix of s . Both ε  and s  are prefixes of s , by 
definition.  
 
The usual set operations, such as union, intersection, difference, and complement (with 
respect to E∗ ) are applicable to languages since languages are sets. In addition, consider 
the following operations (“:=” denotes “equal to by definition”):  
 

• Concatenation: Let 1 2L L E∗, ⊆ , then  
 

{ }1 2 1 2 1 1 2 2( ) ( ) ( )L L s E s s s s L s L∗:= ∈ : = ∧ ∈ ∧ ∈ .  
 

• Prefix-closure: Let L E∗⊆ , then  
 

{ }( )L s E t E st L∗ ∗:= ∈ : ∃ ∈ ∈ .  

 
Thus the prefix-closure L  of L  is the language consisting of all the prefixes of all the 
strings in L . In general, L L⊆ . L  is said to be prefix-closed if L L= .  
 
2. Automata 
 
2.1. Basic Concepts 
 
The automaton modeling formalism is introduced in Discrete Event Systems. For the 
sake of completeness, the definition of an automaton is recalled.  
 
Automaton: A deterministic automaton, denoted by G , is a six-tuple  
 

0( )mG X E f x X= , , ,Γ, ,  
 
where: X  is the set of states, which could be infinite; E  is the finite set of events 
associated with the transitions in G ; f X E X: × →  is the transition function: 

( )f x e y, =  means that there is a transition labeled by event e  from state x  to state y  
(in general, f  is a partial function on its domain); 2EXΓ : →  is the feasible event 
function: ( )xΓ  is the set of all events e  for which ( )f x e,  is defined; 0x  is the initial 
state; mX X⊆  is the set of marked states. (Given a set A , the notation 2A  means the 
power set of A , i.e., the set of all subsets of A .) Proper selection of which states to 
mark is a modeling issue that depends on the problem of interest. By designating certain 
states as marked, we may for instance be recording that the system, upon entering these 
states, has completed some operation or task (cf. example in Section 3.2).  
 
It is convenient to represent graphically automata where X| |  is finite and small by 
means of their state transition diagrams. The state transition diagram of an automaton is 
a directed graph where nodes represent states and labeled arcs between nodes are used 
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to represent the transition function f : if ( )f x e y, = , then an arc labeled by “ e ” is 
drawn from x  to y . Special notation is used to identify the initial states and marked 
states. In Figs. 2-4 below, the initial state is identified by an arrow pointing into it and 
marked states are differentiated by means of a double circle or box.  
 
For the sake of convenience, the transition function f  of an automaton is extended 
from domain X E×  to domain X E∗×  in the following recursive manner:  
 

( )
( ) ( ( ) ) for and
f x x

f x se f f x s e s E e E
ε

∗

, :=

, := , , ∈ ∈ .
 

 
2.2. Languages Represented by Automata 
 
Automata are used to represent and manipulate languages. The language generated by  

0( )mG X E f x X= , , ,Γ, ,  is  
 

0( ) { ( ) is defined }L G s E f x s∗:= ∈ : , .  
 
The language marked by G  is  
 

0( ) { ( ) ( ) }m mL G s L G f x s X:= ∈ : , ∈ .  
 
The language ( )L G  represents all the directed paths that can be followed along the state 
transition diagram of G , starting at the initial state; the string corresponding to a path is 
the concatenation of the event labels of the transitions composing the path. Therefore, a 
string s  is in ( )L G  if and only if it corresponds to an admissible path in the state 
transition diagram, equivalently, if and only if f  is defined at 0( )x s, . ( )L G  is prefix-
closed by definition, since a path is only possible if all its prefixes are also possible. If 
f  is a total function over its domain, then necessarily ( )L G E∗= .  

 
The second language represented by G , ( )mL G , is the subset of ( )L G  consisting only 
of the strings s  for which 0( ) mf x s X, ∈ , i.e., these strings correspond to paths that end 
at a marked state in the state transition diagram. Since not all states of X  need be 
marked, the language marked by G , ( )mL G , need not be prefix-closed in general. The 
language marked is also called the language recognized by the automaton, and the given 
automaton is often referred to as a recognizer of the given language.  
 
An automaton G  thus represents two languages: ( )L G  and ( )mL G . In the standard 
definition of automaton in automata theory, the function f  is required to be a total 
function and the notion of language generated is not meaningful since it is always equal 
to E∗ . Allowing f  to be partial is a consequence of the fact that a discrete event system 
may not be able to produce (or execute) all strings in E∗ .  
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2.2.1. Blocking: Deadlock and Livelock 
 
The definitions of G , ( )L G , and ( )mL G  imply that in general  
 

( ) ( ) ( )m mL G L G L G⊆ ⊆ ,  
 
since mX  may be a proper subset of X . It is worth examining the second set inclusion 
in more detail.  
 
An automaton G  could reach a state x  where ( )xΓ =∅  but mx X∉ . This is called a 
deadlock because no further event can be executed. Given the interpretation of marking, 
this means that the system “blocks” because it enters a deadlock state without having 
terminated the task at hand. If deadlock happens, then necessarily ( )mL G  will be a 
proper subset of ( )L G , since any string in ( )L G  that ends at state x  cannot be a prefix 
of a string in ( )mL G .  
 
Another issue to consider is when there is a set of unmarked states in G  that forms a 
strongly connected component (i.e., these states are reachable from one another), but 
with no transition going out of the set. If the system enters this set of states, then 
livelock results. While the system is “live” in the sense that it can always execute an 
event, it can never complete the task started since no state in the set is marked and the 
system cannot leave this set of states. If livelock is possible, then again ( )mL G  will be a 
proper subset of ( )L G . Any string in ( )L G  that reaches such an “absorbing” set of 
unmarked states cannot be a prefix of a string in ( )mL G , since it is assumed that there is 
no way out of this set. Again, the system is “blocked” in the livelock. The importance of 
deadlock and livelock in discrete event systems leads to the following definition.  
 
Blocking: Automaton G  is said to be blocking if ( ) ( )mL G L G⊂ , where the set 

inclusion is proper, and nonblocking when ( ) ( )mL G L G= .  Thus, if an automaton is 
blocking, this means that deadlock and/or livelock can happen.  
 
The notion of marked states and the definitions of language generated, language 
marked, and blocking, provide an approach for considering deadlock and livelock that is 
useful in a wide variety of applications.  
 
2.3. Accessibility Properties 
 
From the definitions of ( )L G  and ( )mL G , all the states of G  that are not accessible or 
reachable from 0x  by some string in ( )L G  can be deleted without affecting the 
languages generated and marked by G . When “deleting” a state, all the transitions that 
are attached to that state are also deleted. This operation is denoted by ( )Ac G , where 
Ac  stands for taking the “accessible” part.  
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A state x  of G  is said to be coaccessible to mX , or simply coaccessible, if there is a 
path in the state transition diagram of G  from x  to a marked state. The operation of 
deleting all the states of G  that are not coaccessible is denoted by ( )CoAc G , where 
CoAc  stands for taking the “coaccessible” part. Taking the coaccessible part of an 
automaton means building  

{ }
0

0 0
0

( ) ( ) where

( ( ) )

if
undefined otherwise

coac coac

coac coac coac m

coac m

coac
coac

coac X E X

CoAc G X E f x X

X x X s E f x s X

x x X
x

f f

,

∗

,

× →

:= , , , ,

= ∈ : ∃ ∈ , ∈

∈⎧
= ⎨
⎩

= | ,

 

 
where the notation 

coac coacX E Xf × →|  means the restriction of function f  to domain 

coacX E× . The CoAc  operation may shrink ( )L G , since states that are accessible from 

0x  may be deleted; however, the CoAc  operation does not affect ( )mL G , since any 
deleted state is not on any path from 0x  to mX . If ( )G CoAc G= , then G  is said to be 

coaccessible; in this case, ( ) ( )mL G L G= . Coaccessibility is closely related to the 

concept of blocking. Blocking necessarily means that ( )mL G  is a proper subset of ( )L G  
in which case there are accessible states that are not coaccessible.  
 
Note that if the CoAc operation results in coacX =∅  (this would happen if mX =∅  for 
instance), then the empty automaton is obtained. The term “empty automaton” refers to 
an automaton whose state space is empty; an empty automaton necessarily generates 
and marks the empty set.  
 
An automaton that is both accessible and coaccessible is said to be trim. The Trim  
operation is defined as follows:  
 

( ) [ ( )] [ ( )]Trim G CoAc Ac G Ac CoAc G:= =  
 
where the commutativity of Ac  and CoAc  is easily verified.  
 
2.4. Nondeterministic Automata 
 
In the definition of automaton, state transitions describe how an event e  causes a 
transition from some state x  to a unique new state y . Suppose, however, that an event 
e  at state x  may cause transitions to more than one new states. This is a useful manner 
of modeling randomness in the system behavior. In this case, ( )f x e,  should no longer 
represent a specific new state x X∈ , but rather a set of possible new states. In addition, 
let the label ε  be allowed in the state transition diagram of an automaton, i.e., allow 
transitions between distinct states to have the empty string as label. These transitions 
may represent events that cause a change in the “internal” state of the system but are not 
“observable” by an outside observer – imagine that there is no sensor that records this 
state transition. Thus the outside observer cannot attach an event label to such a 
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transition but it recognizes that the transition may occur by using the ε  label. These two 
changes lead to the notion of a nondeterministic automaton.  
 
Nondeterministic automaton: A nondeterministic automaton, denoted by ndG , is a 
six-tuple  
 

0( { } )nd nd mG X E f x Xε= , ∪ , ,Γ, ,  
 
where these objects have the same interpretation as in the definition of deterministic 
automaton, with the two differences that:  
 

1. ndf  is a function ( { }) 2X
ndf X E ε: × ∪ → , i.e., ( )ndf x e X, ⊆  whenever it is 

defined.  
2. The initial state may itself be a set of states, i.e., 0x X⊆ .  

 
3. Operations on Automata 
 
Discrete event models of complex dynamic systems are rarely built in a monolithic 
manner. Instead, a modular approach is used where models of individual components 
are built first, followed by the composition of these models in order to obtain the model 
of the overall system. The synchronization, or coupling, between components can be 
captured by the use of common events between system components. Namely, if 
components A  and B  share event c , then event c  should only occur if both A  and B  
execute it. The process of composing individual automata (that model interacting 
system components) in a manner that captures the synchronization constraints imposed 
by their common events is formalized by the product and parallel composition 
operations that are studied in this section.  
 
- 
- 
- 
 

 
TO ACCESS ALL THE 24 PAGES OF THIS CHAPTER,  

Click here 
 

 
Bibliography 
 
Alur R. and Dill, D.L. (1994). A Theory of Timed Automata. Theoretical Computer Science. 126, pp. 183–
235. [This paper presents a timed discrete-event modeling formalism that has been studied extensively in 
the computer science literature.] 

Arnold A.(1994). Finite transition systems. International Series in Computer Science. Prentice-Hall. [A 
more advanced book on untimed modeling of discrete event systems.] 

Cassandras C.G. and Lafortune S. (1999). Introduction to Discrete Event Systems. Kluwer Academic 
Publishers. [Chapters 2 and 4 of this textbook on discrete event systems present a detailed coverage of 
automata and Petri net models.] 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-27-01


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Modeling of Discrete Event Systems - Stéphane Lafortune  
 

 

©Encyclopedia of Life Support Systems (EOLSS) 

David R. and Alla H. (1992). Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems. 
Prentice-Hall. [A nice textbook on Petri net models and their connection with Grafcet, a programming 
method for programmable logic controllers (PLCs), which are widely-used in industrial automation.] 

Harel D. and Politi M. (1998). Modeling Reactive Systems with Statecharts: The Statemate Approach. 
Wiley. [This book describes a class of hierarchical automaton models that has become popular in 
commercial software packages for modeling discrete-event dynamics.] 

Hoare C.A.R. (1985).  Communicating Sequential Processes. International Series in Computer Science. 
Englewood Cliffs, NJ, Prentice-Hall. [A textbook treatment of the modeling formalism of communicating 
sequential processes.] 

Hopcroft J.E. and Ullman J.D. (1979). Introduction to Automata Theory, Languages, and Computation. 
Reading, MA, Addison-Wesley. [A classic textbook on automata and language theory.] 

Kurshan R.P. (1994). Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic 
Approach. Princeton University Press. [A book on a class of automaton models in the context of formal 
verification.] 

Manna Z. and Pnueli A. (1992). The Temporal Logic of Reactive and Concurrent Systems: Specification. 
Springer-Verlag. [This book describes the use of temporal logic in the specification and verification of 
timed discrete event systems.] 

Murata T. (1989). Petri Nets: Properties, Analysis, and Applications. PIEEE, Vol. 77, 4, Apr, pp.541–
580. [An excellent tutorial/survey paper on Petri net models.] 
 
Biographical Sketch 
 
Stéphane Lafortune received the B. Eng degree from  École Polytechnique de Montréal in 1980, the M. 
Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at 
Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of 
Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr. 
Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from 
the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the 
Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and 
in 2001 (for a paper co-authored with G. Barrett). Dr. Lafortune was a member of the Editorial Board of 
the Journal of Discrete Event Dynamic Systems: Theory and Applications in the period 1993-2000. He 
was Associate Editor at Large (1996-1999) and Associate Editor (1993-1996) of the IEEE Transactions 
on Automatic Control. His research interests are in discrete event systems, intelligent transportation 
systems, and communication networks. He co-authored, with C. Cassandras, the textbook Introduction to 
Discrete Event Systems (Kluwer Academic Publishers, 1999). Recent publications are available at the 
Web site www.eecs.umich.edu/umdes. 


