
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS

Stéphane Lafortune
The University of Michigan, USA

Keywords: Controllability, controller synthesis, nonblocking, observability, supervisor,
supremal controllable sublanguage.

Contents

1. Introduction
1.1. Uncontrolled System
1.2. Feedback Control
1.3. Industrial Applications of Supervisory Control Theory
1.4. Supervisor Design: Illustrative Example
2. Control of Fully-Observed Discrete Event Systems
2.1. Controllability Theorem
2.2. Realization of Supervisors
3. Control of Partially-Observed Discrete Event Systems
3.1. Controllability and Observability Theorem
3.2. Realization of P-supervisors
4. Avoiding Deadlock and Livelock
4.1. Nonblocking Controllability and Observability Theorem
5. Controller Synthesis Techniques
5.1. Dealing with Uncontrollability
5.1.1. Supremal Controllable Sublanguage
5.1.2. BSCP: Basic Supervisory Control Problem
5.1.3. BSCP-NB: Basic Supervisory Control Problem – Nonblocking Case
5.1.4. Infimal Controllable Superlanguage
5.1.5. DuSCP: Dual Version of BSCP
5.2. Dealing with Unobservability
5.2.1. Observable Sublanguages
5.2.2. Infimal Observable Superlanguage
5.2.3. Supervisory Control Problems with Partial Observation
6. Discussion
Glossary
Bibliography
Biographical Sketch

Summary

An overview of key results of the theory of supervisory control for untimed discrete
event systems is presented. The notions of uncontrollable and unobservable events are
introduced and the control paradigm of supervisory control theory is described. The
properties of controllability and observability are shown to arise as necessary and
sufficient conditions for the existence of supervisors that achieve a given desired
behavior. The automated synthesis of supervisors from automata models of the
uncontrolled system and of the desired behavior is considered. The algebraic properties

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

of controllability and observability are discussed and design techniques for dealing with
uncontrollability and unobservability are described.

1. Introduction

This chapter is concerned with the problem of controlling the behavior of a discrete
event system in order to achieve a given set of qualitative objectives. The system is
modeled as the generator of a formal language to which control aspects are added in the
sense that certain events (i.e., transitions) can be disabled by an external controller. In
general, the controller may not be able to observe all the events that occur in the system.
Since the mid-1980’s, several researchers have built on and extended the seminal work
of Ramadge and Wonham and their co-workers, who initiated this general control
paradigm for discrete event systems. The resulting system and control theory for
discrete event systems is known as “supervisory control theory.” This theory addresses
the synthesis of controllers (also called supervisors) for discrete event systems in order
to satisfy a set of logical specifications on the admissible orderings of the events that
can be executed by the system. The main results of this theory include: (i)
characterization of fundamental system-theoretic properties of discrete event systems in
the framework of formal languages and (ii) development of controller synthesis
algorithms for discrete event systems in the framework of automata. This theory has
been extended to timed and stochastic models of discrete event systems; however,
logical specifications and untimed models are the focus of this chapter.

There exist other control theories for discrete event systems, especially for systems
modeled as Petri nets or modeled using formal logics. However, supervisory control
theory is arguably the most complete of these theories regarding its ability to deal with
partial event controllability and partial event observability. Moreover, since the system-
theoretic concepts of this theory are posed in the framework of formal languages, they
are applicable to any discrete-event modeling formalism. These considerations have
motivated the choice of supervisory control theory as the theme of this chapter.

1.3. Uncontrolled System

Assume that the given discrete event system is modeled by automaton G ,

0()mG X E f x X= , , ,Γ, , ,

where: X is the state space of G (it need not be finite); E is the finite event set of G ;
f is the (partial) state transition function: f X E X: × → ; Γ is the feasible event

function: X EΓ : → ; 0x is the unique initial state; and mX is the subset of X that
contains the marked states. (Familiarity with Modeling of Discrete Event Systems and
the notation therein is assumed in the remainder of this chapter.)

Automaton G models the “uncontrolled behavior” of the discrete event system: (i) the
language generated by G is denoted by ()L G ; (ii) the language marked by G is
denoted by ()mL G . The premise is that this behavior is not satisfactory and must be
modified by control; modifying the behavior is to be understood as restricting the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

behavior to a subset of ()L G . In order to alter the behavior of G a supervisor is
introduced; supervisors are denoted by S . Note that the “plant” G is separated from the
“controller” (or supervisor) S , as is customary in control theory. (We shall use the
terms controller and supervisor for S interchangeably.)

The language ()L G contains strings of events that are not acceptable because they
violate some condition imposed on the system. It could be that certain states of G are
undesirable and should be avoided. These could be states where G blocks, via deadlock
or livelock; or they could be states that are physically inadmissible, for example, a
collision of a robot with an automated guided vehicle or an attempt to place a part in a
full buffer in an automated manufacturing system. Moreover, it could be that some
strings in ()L G contain substrings that are not allowed. These substrings may violate a
desired ordering of certain events, for example, requests for the use of a common
resource should be granted in a “first-come first-served” manner. Control objectives that
are expressed in terms of illegal states in G and/or illegal substrings in ()L G are
referred to as safety specifications. Thus, sublanguages of ()L G that represent the
“legal” or “admissible” behavior for the controlled system will be considered. In
addition, absence of deadlocks and livelocks in the controlled system may be required;
these objectives are known as liveness specifications.

1.4. Feedback Control

Consider a general control paradigm for how S interacts with G . In this paradigm, S
sees (or observes) some, possibly all, of the events that G executes. Then, S tells G
which events in the current feasible event set of G are allowed next. More precisely, S
has the capability of disabling some, but not necessarily all, feasible events of G . The
decision about which events to disable will be allowed to change whenever S observes
the execution of a new event by G . In this manner, S exerts dynamic feedback control
on G .

In order to capture the limited actuation capabilities that the supervisor S has over the
system G , the event set E is partitioned into two disjoint subsets

c ucE E E= ∪

where: cE is the set of controllable events: these are the events that can be prevented
from happening, or disabled, by supervisor S ; and ucE is the set of uncontrollable
events: these events cannot be prevented from happening by supervisor S . By
definition, S cannot disable an uncontrollable event.

Similarly, in order to capture the limited sensing capabilities that S has with respect to
the behavior of G , the event set E is partitioned into two disjoint subsets

o uoE E E= ∪

where: oE is the set of observable events: these are the events that can be seen by the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

supervisor; uoE is the set of unobservable events: these are the events that cannot be
seen by the supervisor.

Observe that no specific assumptions are made about the relation between the
controllability and observability properties of an event; an unobservable event could be
controllable, an uncontrollable event could be observable, and so forth. (Think of a
controller of traffic signals: letting a vehicle cross an intersection is a controllable event
that need not be observable unless appropriate vehicle detectors are installed at the
intersection.) The situation when oE is a proper subset of E is called control under
partial observation. In this case, it is customary to denote supervisors by PS rather than
simply S .

Figure 1. The feedback loop of supervisory control in the case of partial observation

The feedback loop for the general situation of control under partial observation is
depicted in Fig. 1. This block diagram includes a block labeled P for “partial
observation.” The effect of each block on the next one in the diagram must be
formalized. The operation P is defined as a projection operation from domain E∗ to
codomain oE∗ , oP E E∗ ∗: → . P erases the unobservable events in a string s E∗∈ to

obtain a string () oP s E∗∈ :

()P ε ε:= (1)

if
()

if
o

uo

e e E
P e

e Eε

⎧⎪
⎨
⎪⎩

∈
:=

∈
 (2), (3)

() () () forP se P s P e s E e E∗:= ∈ , ∈ . (4)

(The symbol ε denotes the empty string.) It is straightforward to extend P to sets of
strings, i.e., languages. Projection P is the only type of projection that is considered in
this chapter.

Due to the presence of P , the supervisor cannot distinguish between two strings 1s and

2s that have the same projection, i.e., for which 1 2() ()P s P s= ; for such 1 2 ()s s L G, ∈ ,
the supervisor will necessarily issue the same control action, 1[()]PS P s . In order to
capture this fact, a partial-observation supervisor is defined as a function

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

[()] 2E
PS P L G: → , where 2E denotes the power set of E , namely the set of all

subsets of E . This means that the control action issued by PS can change only after the
occurrence of an observable event, namely, when ()P s changes.

When an (enabled) observable event occurs, the control action is instantaneously
updated. It is assumed that this update occurs before any unobservable event occurs. For
each ()s L G∈ generated so far by G under the control of PS ,

0[()] (())PS P s f x s∩ Γ ,

is the set of enabled events that G is allowed to execute at its current state 0()f x s,
under the control of PS . In other words, G cannot execute an event that is in its current
feasible event set, 0(())f x sΓ , , if that event is not also contained in [()]PS P s .

[()]PS P s is called the control action at s ; PS is the control policy.

The closed-loop behavior when PS is controlling G as was just described is denoted by

PS G/ . The behavior of the controlled system PS G/ is formally defined in the following
manner:

• The language generated by PS G/ is defined recursively as the set of all strings

that are allowed to occur under the control of PS :
1. ()PL S Gε ∈ /
2. [(()) and (()) and ([()])] [()]P P Ps L S G s L G S P s s L S Gσ σ σ∈ / ∈ ∈ ⇔ ∈ / .

• The language marked by PS G/ is defined as the set of marked strings that

survive under the control of PS :

 () () ()m P P mL S G L S G L G/ := / ∩ . (5)

It is important to note that the languages ()PL S G/ and ()m PL S G/ are defined over E ,
and not oE , i.e., they correspond to the closed-loop behavior of G before the effect of
projection P , namely, as seen at the “output” of G in Fig. 1.

The above definitions of PS , PS G/ , ()PL S G/ and ()m PL S G/ specialize in the obvious
manner to S , S G/ , ()L S G/ and ()mL S G/ in the case of full observation, when

oE E= .

Recall that an automaton H is said to be nonblocking if () ()mL H L H= , namely, when
every string generated by H can be extended to a string marked by H . (Recall that the
“overbar” notation denotes the prefix-closure operation.) A similar property for
controlled behaviors can be defined: supervisor S is said to be nonblocking if

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

() ()mL S G L S G/ = / . (Similarly for PS G/ .) This property is key to satisfying the
liveness specifications mentioned earlier.

1.3. Industrial Applications of Supervisory Control Theory

The published literature contains many examples of the application of the concepts and
techniques of supervisory control theory to many different areas, including: automated
manufacturing, chemical process control, database management, document processing
systems, heating, ventilation, and air-conditioning systems, industrial automation,
intelligent transportation systems, and software systems for telephony and
telecommunications.

These applications invariably involve models with a large number of states, making
them impractical for simple illustrations of theoretical and algorithmic concepts. In
order to get an intuitive understanding of some of the issues that arise in supervisor
design, a simple example of an uncontrolled system with its associated specification is
examined in the following section.

1.4. Supervisor Design: Illustrative Example

Let the uncontrolled system be modeled by the automaton G in Fig. 2. In the figure, the
automaton is depicted as a directed graph where the initial state is identified by the
arrow pointing into it and the marked states are identified by double circles.

The specification on G is given in terms of the marked language of G , ()mL G :
Control G in order to allow only the marked strings in ()mL G , and their prefixes,
where 1a precedes 2a if and only if 1b precedes 2b .

The first step is to represent the desired behavior using an automaton model. Let the
desired automaton be denoted by aH (where the subscript a stands for “admissible”).
A little thought shows that one needs to remember how state 4 of G is reached, i.e., this
state in aH should be split; number as 4 and 9 the two resulting states of aH , where 4
is the state reached by string 2 1a a and 9 is the state reached by string 1 2a a .

 Then event 1b should not occur in state 4 and event 2b should not occur in state 9. The
desired aH is depicted in Fig. 2. As compared with G , aH marks only strings where

1a precedes 2a if and only if 1b precedes 2b .

Also, as required by the specification, the language generated by aH contains only

prefixes of strings marked by aH ; namely, () ()a m aL H L H= , or aH is nonblocking.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

Figure 2. Automata G and aH for illustrative example

 What does a supervisor S need to do to guarantee that () ()aL S G L H/ ⊆ and that S G/
is nonblocking? If all events are controllable and observable, then it is straightforward
to determine what the desired supervisor, say 1S , should do. 1S should use aH to track
the behavior of the system, namely, every event executed by G should cause 1S to
execute the same event in aH and thus update the state of aH . When aH enters state
9, S should disable event 2b , and when aH enters state 4, 1S should disable event 1b ;
otherwise, 1S enables all feasible events in G (as seen in the feasible events of the
corresponding state in aH). In this case, 1S G/ achieves exactly aH in the sense that

1() ()aL S G L H/ = and 1() ()m m aL S G L H/ = .

To illustrate the effect of limited controllability, assume that 2 2{ }ucE a b= , . The
supervisor for this case, denoted by 2S , can again use aH to track the behavior of G .
If 2S allows state 9 of aH to be reached, then it is too late to prevent inadmissible
strings from being generated, since 2S must disable event 2b when aH is in state 9, but

2b is uncontrollable and thus cannot be disabled. The predecessor of state 9 in aH is
state 1, and state 1 has a transition to state 9 with uncontrollable event 2a . This means
that 2S should not allow state 1 of aH to be reached either. Consequently, 2S must
disable event 1a when aH is in state 0. After observing event 2a , 2S can enable 1a .
Finally, 2S should disable 1b when aH enters state 4. Consequently, the presence of
uncontrollable events forces the behavior of the system to be restricted to a proper
subset of ()aL H , even though all of ()aL H is admissible:

2 2 1 2 1 2 2 1 1() { }mL S G a a b b a b a b/ = , and 2 2() ()mL S G L S G/ = / .

To illustrate the effect of limited observability, assume that 2{ }uoE a= . Let ucE be
unchanged: 2 2{ }ucE a b= , . Denote by 3S the supervisor to design for this case. As was
seen above, the uncontrollability of 2a and 2b force the disablement of event 1a when

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

the system is “started” (i.e., when aH is in state 0). Since 2a is not observable, 3S must
also enable 2b at the beginning, otherwise it would be disabling a feasible
uncontrollable event, something that is not allowed in the control paradigm. (Recall that

3S can only update its control action after the occurrence of an observable event.)
Consequently, the next event that 3S expects to see is 2b . Once it sees event 2b , 3S can
enable both 1a and 1b . Overall, the only marked string allowed under control in this
case is 2 2 1 1a b a b . Thus the unobservability of 2a forces the system behavior to be
restricted to an even smaller subset of ()aL H than was obtained above for 2S G/ .

The reader is encouraged to repeat this intuitive process of supervisor design for other
combinations of ucE and uoE . (For instance, try 2{ }uoE a= as above but set ucE = ∅ .)
It quickly becomes obvious that even for this simple example, with only a few marked
strings and at most 10 states, uncontrollability and unobservability can very rapidly
complicate finding a supervisor that guarantees legality and nonblocking of the
controlled system. Intuition may still allow one to design a correct supervisor for this
example, but obviously, formal methods are required if one is to solve any problem with
more than a few dozen states in G and in the automaton representation of the
admissible language, in the presence of uncontrollable and/or unobservable events. The
following sections in this chapter address more formally the effect of the presence of
uncontrollable and unobservable events, respectively.

2. Control of Fully-Observed Discrete Event Systems

In this section, it is assumed that oE E= , namely, there are no unobservable events.
The presentation is focused on the implication of the presence of uncontrollable events
on the classes of languages that can be achieved under supervision, according to the
feedback loop of Fig. 1.

-
-
-

TO ACCESS ALL THE 24 PAGES OF THIS CHAPTER,

Click here

Bibliography

Brandin B.A., Wonham W.M. (1994). Supervisory control of timed discrete-event systems. IEEE Trans.
Automatic Control 39(2), 329-342. [This paper presents an extension of supervisory control theory to
timed models of discrete-event systems].
Cassandras C.G., Lafortune S. (1999). Introduction to Discrete Event Systems. Kluwer Academic
Publishers. [Chapter 3 of this textbook on discrete event systems presents a detailed coverage of the
theory of supervisory control presented in this chapter; see the references therein for applications of

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-27-02

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XV - Supervisory Control Of Discrete Event Systems - Stéphane
Lafortune

©Encyclopedia of Life Support Systems (EOLSS)

supervisory control theory].
Holloway L.E. Krogh B.H., Giua A. (1997). A survey of Petri net methods for controlled discrete event
systems. Discrete Event Dynamic Systems: Theory and Applications 7(2), 151-190. [Comprehensive
survey paper on the control of discrete event systems modeled by Petri nets].
Kumar R., Garg V.K. (1995). Modeling and Control of Logical Discrete Event Systems. Kluwer
Academic Publishers. [A research monograph on the theory of supervisory control].
Maler O., Pnueli A., Sifakis J. (1995). On the synthesis of discrete controllers for timed systems. In
Proceedings of STACS’ 95, pp. 229-242, Springer Verlag, Vol. 900 of Lecture Notes in Computer
Science. [This paper discusses controller synthesis for timed models of discrete event systems by finding
a winning strategy for certain games defined by timed automata].
Marchand H., Bournai P., Le Borgne M., Le Guernic P. (2000). Synthesis of discrete-event controllers
based on the Signal environment. Discrete Event Dynamic Systems: Theory and Applications 10(4), 325-
346. [This paper describes an environment for controller synthesis of discrete event systems based on
polynomial dynamical system models and on the synchronous language SIGNAL].
Moody J., Antsaklis P.J. (1998). Supervisory Control of Discrete Event Systems Using Petri nets. Kluwer
Academic Publishers. [This book introduces an approach to the synthesis of controllers for discrete event
systems modeled by Petri nets using notions of place invariants].
Ostroff J.S. (1989). Temporal Logic for Real-Time Systems. Research Studies Press and John Wiley &
Sons. [This book describes an approach for real-time control of discrete-event systems modeled by timed
automata and where the specification is described using temporal logic].
Ramadge P.J., Wonham W.M. (1989). The control of discrete event systems. Proceedings of the IEEE
77(1), 81-98. [Excellent survey paper introducing the theory of supervisory control initiated by the
authors].

Biographical Sketch

Stéphane Lafortune received the B. Eng degree from École Polytechnique de Montréal in 1980, the M.
Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at
Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of
Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr.
Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the
Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and
in 2001 (for a paper co-authored with G. Barrett). Dr. Lafortune was a member of the Editorial Board of
the Journal of Discrete Event Dynamic Systems: Theory and Applications in the period 1993-2000. He
was Associate Editor at Large (1996-1999) and Associate Editor (1993-1996) of the IEEE Transactions
on Automatic Control. His research interests are in discrete event systems, intelligent transportation
systems, and communication networks. He co-authored, with C. Cassandras, the textbook Introduction to
Discrete Event Systems (Kluwer Academic Publishers, 1999). Recent publications are available at the
Web site www.eecs.umich.edu/umdes.

