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Summary 
 
An overview of key results of the theory of supervisory control for untimed discrete 
event systems is presented. The notions of uncontrollable and unobservable events are 
introduced and the control paradigm of supervisory control theory is described. The 
properties of controllability and observability are shown to arise as necessary and 
sufficient conditions for the existence of supervisors that achieve a given desired 
behavior. The automated synthesis of supervisors from automata models of the 
uncontrolled system and of the desired behavior is considered. The algebraic properties 
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of controllability and observability are discussed and design techniques for dealing with 
uncontrollability and unobservability are described.  
 
1. Introduction 
 
This chapter is concerned with the problem of controlling the behavior of a discrete 
event system in order to achieve a given set of qualitative objectives. The system is 
modeled as the generator of a formal language to which control aspects are added in the 
sense that certain events (i.e., transitions) can be disabled by an external controller. In 
general, the controller may not be able to observe all the events that occur in the system. 
Since the mid-1980’s, several researchers have built on and extended the seminal work 
of Ramadge and Wonham and their co-workers, who initiated this general control 
paradigm for discrete event systems. The resulting system and control theory for 
discrete event systems is known as “supervisory control theory.” This theory addresses 
the synthesis of controllers (also called supervisors) for discrete event systems in order 
to satisfy a set of logical specifications on the admissible orderings of the events that 
can be executed by the system. The main results of this theory include: (i) 
characterization of fundamental system-theoretic properties of discrete event systems in 
the framework of formal languages and (ii) development of controller synthesis 
algorithms for discrete event systems in the framework of automata. This theory has 
been extended to timed and stochastic models of discrete event systems; however, 
logical specifications and untimed models are the focus of this chapter.  
 
There exist other control theories for discrete event systems, especially for systems 
modeled as Petri nets or modeled using formal logics. However, supervisory control 
theory is arguably the most complete of these theories regarding its ability to deal with 
partial event controllability and partial event observability. Moreover, since the system-
theoretic concepts of this theory are posed in the framework of formal languages, they 
are applicable to any discrete-event modeling formalism. These considerations have 
motivated the choice of supervisory control theory as the theme of this chapter.  
 
1.3. Uncontrolled System 
 
Assume that the given discrete event system is modeled by automaton G ,  
  

0( )mG X E f x X= , , ,Γ, , ,  

 
where: X  is the state space of G  (it need not be finite); E  is the finite event set of G ; 
f  is the (partial) state transition function: f X E X: × → ; Γ  is the feasible event 

function: X EΓ : → ; 0x  is the unique initial state; and mX  is the subset of X  that 
contains the marked states. (Familiarity with Modeling of Discrete Event Systems and 
the notation therein is assumed in the remainder of this chapter.)  
 
Automaton G  models the “uncontrolled behavior” of the discrete event system: (i) the 
language generated by G  is denoted by ( )L G ; (ii) the language marked by G  is 
denoted by ( )mL G . The premise is that this behavior is not satisfactory and must be 
modified by control; modifying the behavior is to be understood as restricting the 
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behavior to a subset of ( )L G . In order to alter the behavior of G  a supervisor is 
introduced; supervisors are denoted by S . Note that the “plant” G  is separated from the 
“controller” (or supervisor) S , as is customary in control theory. (We shall use the 
terms controller and supervisor for S  interchangeably.)  
 
The language ( )L G  contains strings of events that are not acceptable because they 
violate some condition imposed on the system. It could be that certain states of G  are 
undesirable and should be avoided. These could be states where G  blocks, via deadlock 
or livelock; or they could be states that are physically inadmissible, for example, a 
collision of a robot with an automated guided vehicle or an attempt to place a part in a 
full buffer in an automated manufacturing system. Moreover, it could be that some 
strings in ( )L G  contain substrings that are not allowed. These substrings may violate a 
desired ordering of certain events, for example, requests for the use of a common 
resource should be granted in a “first-come first-served” manner. Control objectives that 
are expressed in terms of illegal states in G  and/or illegal substrings in ( )L G  are 
referred to as safety specifications. Thus, sublanguages of ( )L G  that represent the 
“legal” or “admissible” behavior for the controlled system will be considered. In 
addition, absence of deadlocks and livelocks in the controlled system may be required; 
these objectives are known as liveness specifications.  
 
1.4. Feedback Control 
 
Consider a general control paradigm for how S  interacts with G . In this paradigm, S  
sees (or observes) some, possibly all, of the events that G  executes. Then, S  tells G  
which events in the current feasible event set of G  are allowed next. More precisely, S  
has the capability of disabling some, but not necessarily all, feasible events of G . The 
decision about which events to disable will be allowed to change whenever S  observes 
the execution of a new event by G . In this manner, S  exerts dynamic feedback control 
on G .  
 
In order to capture the limited actuation capabilities that the supervisor S  has over the 
system G , the event set E  is partitioned into two disjoint subsets  
  

c ucE E E= ∪  

 
where: cE  is the set of controllable events: these are the events that can be prevented 
from happening, or disabled, by supervisor S ; and ucE  is the set of uncontrollable 
events: these events cannot be prevented from happening by supervisor S . By 
definition, S  cannot disable an uncontrollable event.  
 
Similarly, in order to capture the limited sensing capabilities that S  has with respect to 
the behavior of G , the event set E  is partitioned into two disjoint subsets  
  

o uoE E E= ∪  

 
where: oE  is the set of observable events: these are the events that can be seen by the 
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supervisor; uoE  is the set of unobservable events: these are the events that cannot be 
seen by the supervisor.  
 
Observe that no specific assumptions are made about the relation between the 
controllability and observability properties of an event; an unobservable event could be 
controllable, an uncontrollable event could be observable, and so forth. (Think of a 
controller of traffic signals: letting a vehicle cross an intersection is a controllable event 
that need not be observable unless appropriate vehicle detectors are installed at the 
intersection.) The situation when oE  is a proper subset of E  is called control under 
partial observation. In this case, it is customary to denote supervisors by PS  rather than 
simply S .  
 

 
 

Figure 1. The feedback loop of supervisory control in the case of partial observation 
 

The feedback loop for the general situation of control under partial observation is 
depicted in Fig. 1. This block diagram includes a block labeled P  for “partial 
observation.” The effect of each block on the next one in the diagram must be 
formalized. The operation P  is defined as a projection operation from domain E∗  to 
codomain oE∗ , oP E E∗ ∗: → . P  erases the unobservable events in a string s E∗∈  to 

obtain a string ( ) oP s E∗∈ :  
 

( )P ε ε:=  (1) 
 

if                            
( )

if                                 
o

uo

e e E
P e

e Eε

⎧⎪
⎨
⎪⎩

∈  
:=

∈
 (2), (3) 

 
( ) ( ) ( ) forP se P s P e s E e E∗:= ∈ , ∈ .  (4) 

 
(The symbol ε  denotes the empty string.) It is straightforward to extend P  to sets of 
strings, i.e., languages. Projection P  is the only type of projection that is considered in 
this chapter.  
 
Due to the presence of P , the supervisor cannot distinguish between two strings 1s  and 

2s  that have the same projection, i.e., for which 1 2( ) ( )P s P s= ; for such 1 2 ( )s s L G, ∈ , 
the supervisor will necessarily issue the same control action, 1[ ( )]PS P s . In order to 
capture this fact, a partial-observation supervisor is defined as a function 
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[ ( )] 2E
PS P L G: → , where 2E  denotes the power set of E , namely the set of all 

subsets of E . This means that the control action issued by PS  can change only after the 
occurrence of an observable event, namely, when ( )P s  changes.  
 
When an (enabled) observable event occurs, the control action is instantaneously 
updated. It is assumed that this update occurs before any unobservable event occurs. For 
each ( )s L G∈  generated so far by G  under the control of PS ,  
  

0[ ( )] ( ( ))PS P s f x s∩ Γ ,  

 
is the set of enabled events that G  is allowed to execute at its current state 0( )f x s,  
under the control of PS . In other words, G  cannot execute an event that is in its current 
feasible event set, 0( ( ))f x sΓ , , if that event is not also contained in [ ( )]PS P s . 

[ ( )]PS P s  is called the control action at s ; PS  is the control policy. 
  
The closed-loop behavior when PS  is controlling G  as was just described is denoted by 

PS G/ . The behavior of the controlled system PS G/  is formally defined in the following 
manner:  
 
• The language generated by PS G/  is defined recursively as the set of all strings   

that are allowed to occur under the control of PS :  
1. ( )PL S Gε ∈ /   
2. [( ( )) and ( ( )) and ( [ ( )])] [ ( )]P P Ps L S G s L G S P s s L S Gσ σ σ∈ / ∈ ∈ ⇔ ∈ / .
  
• The language marked by PS G/  is defined as the set of marked strings that 

survive under the control of PS :  
 
 ( ) ( ) ( )m P P mL S G L S G L G/ := / ∩ .  (5) 

 
It is important to note that the languages ( )PL S G/  and ( )m PL S G/  are defined over E , 
and not oE , i.e., they correspond to the closed-loop behavior of G  before the effect of 
projection P , namely, as seen at the “output” of G  in Fig. 1.  
 
The above definitions of PS , PS G/ , ( )PL S G/  and ( )m PL S G/  specialize in the obvious 
manner to S , S G/ , ( )L S G/  and ( )mL S G/  in the case of full observation, when 

oE E= .  
 
Recall that an automaton H  is said to be nonblocking if ( ) ( )mL H L H= , namely, when 
every string generated by H  can be extended to a string marked by H . (Recall that the 
“overbar” notation denotes the prefix-closure operation.) A similar property for 
controlled behaviors can be defined: supervisor S  is said to be nonblocking if 
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( ) ( )mL S G L S G/ = / . (Similarly for PS G/ .) This property is key to satisfying the 
liveness specifications mentioned earlier.  
 
1.3. Industrial Applications of Supervisory Control Theory 
 
The published literature contains many examples of the application of the concepts and 
techniques of supervisory control theory to many different areas, including: automated 
manufacturing, chemical process control, database management, document processing 
systems, heating, ventilation, and air-conditioning systems, industrial automation, 
intelligent transportation systems, and software systems for telephony and 
telecommunications.  
 
These applications invariably involve models with a large number of states, making 
them impractical for simple illustrations of theoretical and algorithmic concepts. In 
order to get an intuitive understanding of some of the issues that arise in supervisor 
design, a simple example of an uncontrolled system with its associated specification is 
examined in the following section.  
 
1.4. Supervisor Design: Illustrative Example 
 
Let the uncontrolled system be modeled by the automaton G  in Fig. 2. In the figure, the 
automaton is depicted as a directed graph where the initial state is identified by the 
arrow pointing into it and the marked states are identified by double circles.  
 
The specification on G  is given in terms of the marked language of G , ( )mL G :  
Control G  in order to allow only the marked strings in ( )mL G , and their prefixes, 
where 1a  precedes 2a  if and only if 1b  precedes 2b .   
 
The first step is to represent the desired behavior using an automaton model. Let the 
desired automaton be denoted by aH  (where the subscript a  stands for “admissible”). 
A little thought shows that one needs to remember how state 4 of G  is reached, i.e., this 
state in aH  should be split; number as 4 and 9 the two resulting states of aH , where 4 
is the state reached by string 2 1a a  and 9 is the state reached by string 1 2a a . 
 
 Then event 1b  should not occur in state 4 and event 2b  should not occur in state 9. The 
desired aH  is depicted in Fig. 2. As compared with G , aH  marks only strings where 

1a  precedes 2a  if and only if 1b  precedes 2b .  
 
Also, as required by the specification, the language generated by aH  contains only 

prefixes of strings marked by aH ; namely, ( ) ( )a m aL H L H= , or aH  is nonblocking.  
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Figure 2. Automata G  and aH  for illustrative example 
 
 What does a supervisor S  need to do to guarantee that ( ) ( )aL S G L H/ ⊆  and that S G/  
is nonblocking? If all events are controllable and observable, then it is straightforward 
to determine what the desired supervisor, say 1S , should do. 1S  should use aH  to track 
the behavior of the system, namely, every event executed by G  should cause 1S  to 
execute the same event in aH  and thus update the state of aH . When aH  enters state 
9, S  should disable event 2b , and when aH  enters state 4, 1S  should disable event 1b ; 
otherwise, 1S  enables all feasible events in G  (as seen in the feasible events of the 
corresponding state in aH ). In this case, 1S G/  achieves exactly aH  in the sense that 

1( ) ( )aL S G L H/ =  and 1( ) ( )m m aL S G L H/ = .  
 
To illustrate the effect of limited controllability, assume that 2 2{ }ucE a b= , . The 
supervisor for this case, denoted by 2S , can again use aH  to track the behavior of G . 
If 2S  allows state 9 of aH  to be reached, then it is too late to prevent inadmissible 
strings from being generated, since 2S  must disable event 2b  when aH  is in state 9, but 

2b  is uncontrollable and thus cannot be disabled. The predecessor of state 9 in aH  is 
state 1, and state 1 has a transition to state 9 with uncontrollable event 2a . This means 
that 2S  should not allow state 1 of aH  to be reached either. Consequently, 2S  must 
disable event 1a  when aH  is in state 0. After observing event 2a , 2S  can enable 1a . 
Finally, 2S  should disable 1b  when aH  enters state 4. Consequently, the presence of 
uncontrollable events forces the behavior of the system to be restricted to a proper 
subset of ( )aL H , even though all of ( )aL H  is admissible: 

2 2 1 2 1 2 2 1 1( ) { }mL S G a a b b a b a b/ = ,  and 2 2( ) ( )mL S G L S G/ = / .  
 
To illustrate the effect of limited observability, assume that 2{ }uoE a= . Let ucE  be 
unchanged: 2 2{ }ucE a b= , . Denote by 3S  the supervisor to design for this case. As was 
seen above, the uncontrollability of 2a  and 2b  force the disablement of event 1a  when 
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the system is “started” (i.e., when aH  is in state 0). Since 2a  is not observable, 3S  must 
also enable 2b  at the beginning, otherwise it would be disabling a feasible 
uncontrollable event, something that is not allowed in the control paradigm. (Recall that 

3S  can only update its control action after the occurrence of an observable event.) 
Consequently, the next event that 3S  expects to see is 2b . Once it sees event 2b , 3S  can 
enable both 1a  and 1b . Overall, the only marked string allowed under control in this 
case is 2 2 1 1a b a b . Thus the unobservability of 2a  forces the system behavior to be 
restricted to an even smaller subset of ( )aL H  than was obtained above for 2S G/ .  
 
The reader is encouraged to repeat this intuitive process of supervisor design for other 
combinations of ucE  and uoE . (For instance, try 2{ }uoE a=  as above but set ucE = ∅ .) 
It quickly becomes obvious that even for this simple example, with only a few marked 
strings and at most 10 states, uncontrollability and unobservability can very rapidly 
complicate finding a supervisor that guarantees legality and nonblocking of the 
controlled system. Intuition may still allow one to design a correct supervisor for this 
example, but obviously, formal methods are required if one is to solve any problem with 
more than a few dozen states in G  and in the automaton representation of the 
admissible language, in the presence of uncontrollable and/or unobservable events. The 
following sections in this chapter address more formally the effect of the presence of 
uncontrollable and unobservable events, respectively.  
 
2. Control of Fully-Observed Discrete Event Systems 
 
In this section, it is assumed that oE E= , namely, there are no unobservable events. 
The presentation is focused on the implication of the presence of uncontrollable events 
on the classes of languages that can be achieved under supervision, according to the 
feedback loop of Fig. 1. 
  
 
- 
- 
- 
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