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Summary 
 
The distinguishing characteristic of hybrid systems is the interaction between a 
continuous-time and a discrete-event component. By modeling these different 
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components using differential equations and finite state automata, it is possible to 
represent a wide range of phenomena present in physical and technological systems. 
This chapter illustrates hybrid dynamics by several simple examples. Some of these 
examples illustrate properties of hybrid systems not present in purely continuous or 
purely discrete systems, while others illustrate application domains such as vehicle 
control and real-time systems. A mathematical model called a hybrid automaton is then 
introduced, to show how hybrid dynamics can be formally analyzed. 
 
1. Introduction 
 
In the literature, the term “hybrid systems” is used to describe a very wide class of 
dynamical systems that involve the interaction of heterogeneous data types and 
dynamics. Of great interest is the class of hybrid systems that arises out of the 
interaction of continuous dynamics that describe the evolution of a continuous state 
under differential or difference equations, with discrete dynamics, that describe the 
evolution of a finite state under automata or other models of computation. This class of 
hybrid systems has been the focus of intense research activity in recent years. The 
reason is that it provides a convenient framework for modeling a wide range of 
engineering systems. For example, the hybrid framework is ideal for modeling systems 
with multiple time scales, where the fast dynamics can be abstracted away and be 
treated as discrete changes affecting the slower dynamics. Examples include mechanical 
systems with collisions, circuits with diodes and switches, chemical processes 
controlled by valves or pumps, and, most importantly, embedded computation systems, 
where digital devices interact with an analogue environment. 
 
Another reason for the popularity of hybrid systems is their importance in applications. 
Methods and tools developed for hybrid systems have already proved useful in a wide 
range of technological application. Following early work on the verification of digital 
circuits, the hybrid formalism and tools have been subsequently extended to the 
verification of embedded software, real-time communication protocols, air traffic 
control, automotive control, bioengineering, process control, highway systems and 
manufacturing. Though many of the applications are still too complicated to be 
addressed in their full generality by existing hybrid tools, impressive progress has been 
recorded in all of these application areas. 
 
The aim of this chapter is to highlight the diversity of hybrid phenomena that one 
encounters in physical and technological systems. In Section 2 a number of examples 
are presented to illustrate the types of issues that arise out of the discrete-continuous 
interaction and the types of applications that can be addressed using a hybrid approach. 
We also discuss the common themes that emerge in the study of these examples.  
 
In Section 3 we present a formal mathematical framework, which we call hybrid 
automaton, in which all of these diverse phenomena can be modeled and analyzed. 
Then, in Section 4, we discuss how one can determine whether models developed in the 
hybrid automaton framework are reasonable representations of physical reality, or 
whether they contain fundamental flaws. Software tools for modeling hybrid systems 
are briefly discussed in Section 5. 
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2. Examples of Hybrid Systems 
 
Hybrid control systems are a much richer class of systems than ordinary control 
systems. In a hybrid system there is an interaction between continuous and discrete 
dynamics. The continuous flow is in general influenced not only by the regular 
continuous control, but also by the discrete mode. Similarly, the discrete dynamics are 
affected by both discrete control actions and, indirectly, by the continuous flow. In 
addition to control inputs, there might be both continuous and discrete disturbances 
acting on the systems. Therefore, in its full generality, a hybrid control system can be a 
rather complicated object. In Section 3 we present a mathematical framework that 
allows one to model a class of hybrid phenomena. First, however, we informally 
introduce a number of examples, which are chosen to illustrate various characteristics of 
hybrid dynamics. 
 
2.1. Water Tank System 
 
Consider the two-tank system shown in Figure 1. For {1,2}i∈ , let ix denote the volume 
of water in Tank i and 0iv > denote the constant flow of water out of Tank i . Let 
w denote the constant flow of water into the system, dedicated exclusively to either 
Tank 1 or Tank 2 at each time instant. The objective is to keep the water volumes above 
1r and 2r , respectively, assuming that the water volumes are above 1r and 2r initially. 

This is to be achieved by a controller that switches the inflows to Tank 1 whenever 
1 1x r≤ and to Tank 2 whenever 2 2x r≤ . The water tank systems can be represented by 

the hybrid system of Figure 1. 
 

 
 

Figure 1: Water tank system and the corresponding hybrid system. 
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Suppose that at the initial time 1 1x r≤ and 2 2x r≤ , and that the inflow if directed to Tank 
1 (i.e., the discrete state q of the system is equal to 1q ). Then the continuous state flows 
according to the differential equation in the 1q state in Figure 1. When the condition 

2 2x r≤ (specified on the edge) is fulfilled, a discrete transition takes place. 
Subsequently, the state resumes flowing according to the 2q state and so on. Such a 
trajectory having one continuous component, x , and one discrete component, q , is 
called an execution (sometimes a run or a solution) of the hybrid system. An execution 
of the hybrid system is shown in Figure 2. 
 
If 1 2 1 2max( , )v v w v v< < + , physical intuition suggests that at least one of the water 
tanks will eventually drain. In the hybrid model this leads to an accumulation of jump 
instances. This behavior is known as the Zeno phenomenon and is further discussed in 
Section 4. 

 

 
 

Figure 2: Example of an execution of the water tank hybrid system. 
 
2.2. Bouncing Ball 
 
A model for a bouncing ball can be represented as a simple hybrid system with a 
continuous state of dimension two 1 2( , )x x x=  and a single discrete state (Figure 3). 

1x denotes the vertical position of the ball and 2x its velocity. The continuous motion of 
the ball, governed by Newton’s laws of motion, is represented by the differential 
equation in the vertex of the graph, where g denotes the gravitational acceleration. As 
specified, the equation is only valid as long as 1 0x ≥ , i.e., as long as the ball is above 
the ground. The ball bounces when 1 0x = and 2 0x ≤ , which is detailed by the left 
expression attached to the edge of the graph (∧denotes the logical “and”). At each 
bounce, the ball loses a fraction of its energy. This is represented by the 
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equation 2 2:x cx= − , where 2 [0,1]c ∈ is the coefficient of restitution. (The notation “: =” 
should be interpreted as if 2x is reset to the value 2cx− at the transition. The reset map is 
formally defined in Section 3.) 
 
Starting at a point 1 2( , )x x with 1 0x > , the continuous state flows according to the 
vector field as long as the condition 1 0x ≥ is fulfilled. When 1 0x = and 2 0x ≤ , a 
discrete transition takes place and the continuous state is reset to 2 2:x cx= − ( 1x remains 
constant). Subsequently, the state resumes flowing according to the vector field and so 
on. 
 
For this example, it is easy to see that for (0,1)c∈ there is an accumulation point for the 
times of the discrete jumps. In other words, the ball bounces infinitely many times in a 
finite time interval. The bouncing ball hence exhibit Zeno phenomenon, similar to the 
water tank system. Note however that the continuous state is constant at discrete 
transitions for the water tank system (the water volumes do not change during the 
switch of the inflow), while for the bouncing ball system the continuous state makes a 
jump. 

 

 
 

Figure 3: A hybrid system modeling bouncing ball. 
 
2.3. Clegg Integrator 
 
Many classical control strategies involve mode switching and other discontinuous 
control actions. Examples include anti-windup schemes, gain scheduling and sliding 
model control. One motivation for hybrid control models is to include all these 
strategies within a single mathematical framework. Here we describe a classical fix in 
process control, where the state of the integrator in the PID controller (see Design 
Methods for Digital Controllers, Sample-Rate) is reset whenever its input crosses zero. 
This so called Clegg integrator was invented by J.C. Clegg in 1958. 
 
Let e be the input to the Clegg integrator and x  the integrator state. The Clegg 
Integrator can be described by 
 

( ) ( )x t e t=  and  ( ) 0, if ( ) 0x t e t+ = = , 
 
where the plus sign indicates that x is set to zero directly after e becomes zero. Figure 4 
shows a hybrid model for the same set of equations. The hybrid system has the input 
e and the output x . 
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Figure 4: Hybrid system illustrating the Clegg Integrator. 
 
The advantage of using a Clegg Integrator compared to an ordinary integrator is that it 
gives less phase lag, and thus in many applications improved stability margin. Using the 
describing function method (see Describing Function Method) it is easy to show that the 
Clegg Integrator gives 38 degrees phase lag, compared to 90 degrees of an ordinary 
integrator. A disadvantage with the Clegg Integrator is that it may induce oscillations.  
 
2.4. Thermostat 
 
Consider the control problem of maintaining the temperature of a room at some desired 
level (say 19 degrees Celsius). Assume that a thermostat is used as a controller, but that 
we do not have an exact model of how the thermostat functions. It is only known that 
the thermostat turns on the radiator when the temperature is between 16 and 18 degrees 
and it turns the radiator off when the temperature is between 20 and 22. This heating 
system can be modeled as the hybrid system in Figure 5, where x denotes the 
temperature and the two discrete states correspond to the radiator being off and on.  
 
In this example, there is some uncertainty about when a transition takes place. We know 
that this will happen when the temperature is in the intervals [16,18] and [20,22], but 
not exactly when. Let us elaborate on how this ambiguity is captured by the hybrid 
system model. (A formal description is given in Section 3.) Note that there are three 
components associated with the discrete dynamics: (1) the domains 16x ≥ and 22x ≤ , 
which constrain the values of the continuous state in the corresponding discrete state; 
(2) the guard conditions 18x ≤ and 20x ≥ , which determine when a discrete transition 
is allowed to happen (is enabled); and (3) the reset map x x , which specifies the 
relation between the old and the new continuous state when a transition takes place 
(which in this example is equal to the identity map, but for the bouncing ball, for 
example, is 1 2 1 2( , ) ( , )x x x cx− ).  
 
The interpretation is as follows: as long as the continuous state x belongs to a domain, 
continuous evolution may continue (the temperature may continue to increase/decrease 
according to the differential equation). When x enters a guard, a discrete jump may take 
place (the radiator may be switched on/off). For the thermostat system this means that 
if, for example, the state is ( , )q x = (no heating,19) then continuous evolution may 
continue. If the state is ( , )q x = (no heating,17) either continuous evolution can continue, 
or a discrete jump to state ( , )q x = (heating, 17) can take place. Finally, if the state is 
( , )q x =  (no heating, 16), a discrete jump must take place, because continuous evolution 
would lead x outside the domain.  
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The thermostat hybrid system is non-deterministic, in the sense that for a given initial 
condition it accepts a whole family of different executions. A formal definition of a 
hybrid systems and its evolution is given in Section 3, and determinism is discussed in 
Section 4. 

 

 
 

Figure 5: Hybrid system modeling a thermostat and the heating of a room. 
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