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Summary  

 

The classical Hamiltonian perturbation theory (the name ―canonical perturbation 

theory‖ is also used) is a bridge between the general Hamiltonian dynamics and 

Celestial Mechanics. The word ―classical‖ here means of course ―finite dimensional, not 

quantum mechanical, not in the generalized sense, and not belonging to the realm of 

Statistical Mechanics‖ (in particular, we regard Celestial Mechanics as a part of 

Classical Mechanics). In this chapter, we outline some basic topics in the Hamiltonian 

perturbation theory from a general viewpoint. We do intentionally not describe any 

applications because many illuminative examples are presented in other chapters of this 

volume.  

 

After two introductory Sections 1 and 2, we proceed to integrable Hamiltonian systems 

(Section 3) which are usually treated as ―unperturbed‖ ones. The formal computational 

procedures of the theory are dealt with in Section 4; some of them were well developed 

by the end of the 19
th

 century. The main contribution of the 20
th

 century to the subject in 

question, the so-called Kolmogorov–Arnold–Moser (KAM) theory which allows one to 

explore non-integrable perturbations on a dynamical and geometric level rather than on 

a formal and computational one, is sketched in Section 5. We continue reviewing 

perturbed dynamics in Section 6. The chapter is concluded by a list of more advanced 

topics (in Section 7) we have been forced not to consider in this brief survey.  
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1. Introduction  

 

The perturbation theory of dynamical systems is called to explore the changes in 

dynamics as one perturbs (slightly modifies) the system at hand. Such studies are 

indispensable and of crucial importance for mathematics, natural science, and 

engineering due to two reasons.  

 

First, while creating a mathematical model of a certain object or phenomenon in the real 

world, one usually neglects enormously many constituents that are not very relevant but 

can in principle affect the processes in question. For instance, the planetary system is 

modeled, as a rule, by a collection of several mass points — the star (Sun) and planets 

— interacting via Newton’s law of gravitation. Here one does not take into account that 

the central star and all the planets have finite sizes, rotate, and can undergo tidal torques, 

that the system also includes such small bodies as moons of the planets, dwarf planets, 

asteroids, comets, and meteoroids, that the masses of the Sun and planets slowly 

change, etc. One also neglects cosmic dust, the solar radiation pressure, the gravitational 

attraction of various objects outside the given planetary system (such as other stars, 

black holes, and dark matter), the influence of dark energy, etc. Many of these effects 

are of non-Hamiltonian nature. Moreover, even if one confines oneself with examining 

the mathematical model itself, its parameters (the masses and initial positions and 

velocities of the star and planets in our example) can never be known with infinite 

precision. Consequently, only those features deserve study that are in a certain sense 

persistent under small perturbations of the model. A phenomenon that is characteristic 

of a particular system and completely disappears under arbitrarily small variations of the 

system cannot be expected to describe anything in the physical world.  

 

Second, in many cases, mathematical models of real objects turn out to be close to 

extremely simple systems. For instance, the mutual gravitational attraction of the 

planets to each other is small compared to the attraction of the planets to the star (in our 

Solar System, the mass of the heaviest planet, Jupiter, is 0.0009546 times the mass of 

the Sun). Thus, ―in the zero-th approximation‖, the motions of the planets can be 

represented as independent motions of non-interacting particles around a fixed attracting 

center along Keplerian ellipses. As a rule, the simple ―unperturbed‖ systems one deals 

with are rather special (for example, they may possess additional symmetries absent in 

generic systems), and the actual behavior in the model at hand can be very far from the 

dynamics in its ―unperturbed‖ version. However, the presence of ―small parameters‖ in 

the model (the zero values of these parameters corresponding to the ―unperturbed‖ case) 

usually facilitates the study of the model greatly. The methods for such studies in 

various situations and the results obtained constitute the core of the perturbation theory.  

 

The present chapter is mainly devoted to nearly integrable Hamiltonian systems, i.e. 

Hamiltonian systems close to so-called completely integrable systems, see Section 3.1 

below. Throughout the chapter, the notation a b  for vector quantities  1, ,a a a  

and  1, ,b b b  means 1 1a b a b  . 
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2. Simplest Persistence Problems  

 

To fix thoughts, we start our exposition by some almost trivial persistence problems in 

Hamiltonian dynamics. The simplest dynamical pattern is an equilibrium point. Let a 

given autonomous Hamiltonian system  0x V x  with n  degrees of freedom possess 

an equilibrium point O    0V O  . How does this affect the dynamics of nearby 

systems? The following proposition answers this question.  

 

Theorem 2.1: The 2n  eigenvalues of the linearization of  0x V x  around O come in 

pairs ,  . If all these eigenvalues are other than zero, then the equilibrium point O 

persists under small Hamiltonian perturbations of the system: any system  x V x  

with V  sufficiently close to 0V  possesses an isolated equilibrium point close to O, and 

if V  depends smoothly on some external parameters, so does the corresponding 

equilibrium point.  

 

This trivial result immediately follows from the implicit function theorem. In fact, the 

Hamiltonian nature of systems is irrelevant here (it manifests itself only in the 

symmetry of the spectra with respect to 0).  

 

Now let us suppose that a Hamiltonian system  0x V x  with n  degrees of freedom 

possesses a closed trajectory  . To this trajectory, one assigns the Poincaré return map 

(―first recurrence map‖)   and the eigenvalues of the linearization of   around the 

fixed point corresponding to   (the multipliers of  ). 

 

Theorem 2.2: One of the multipliers of   is equal to 1, the other 2 2n  multipliers 

coming in pairs 1,  . If all these 2 2n  multipliers are other than 1, the trajectory   

is included in a smooth one-parameter family of periodic trajectories with different 

periods (one trajectory per energy value). Moreover, this one-parameter family of 

closed trajectories persists under small Hamiltonian perturbations of the system (in the 

same sense as in the case of Theorem 2.1).  

 

This result is again an easy consequence of the implicit function theorem applied to the 

Poincaré section within an energy level hypersurface in the phase space. 

 

Now observe that an equilibrium point is an invariant 0-torus 
0

, and a periodic 

trajectory is an invariant 1-torus 
1 1  (a circle) without equilibrium points. On such a 

trajectory, one can introduce a uniformly rotating angular coordinate mod 2   

( 0   , where 2 /   is the period). As the next step, it is natural to consider an 

invariant 2-torus 
2 1 1   without equilibrium points and closed trajectories. It 

follows from some results by A. Denjoy (1932) and C. L. Siegel (1945) that any 2C  

vector field on 
2

 without equilibria and periodic trajectories has a constant form 

 1 2,   in a suitable coordinate frame  1 2, modd2   , the frequency ratio 2 1   

being irrational (however, the transition functions from the original coordinates to the 
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new ones cannot always be chosen to be smooth). The following concepts are central in 

the classical perturbation theory. 

 

Definition 2.1: An invariant -torus    1 2    of an autonomous 

(not necessarily Hamiltonian) flow is said to carry conditionally periodic motions with a 

frequency vector   if the flow on  (sometimes called a Kronecker flow in this 

case) takes the constant form    in a suitable coordinate frame  1, , modd2   . 

This torus is said to be non-resonant if the frequencies 1, ,   are incommensurable 

(linearly independent over rationals) and is said to be resonant otherwise. Conditionally 

periodic motions with incommensurable frequencies are called quasi-periodic motions. 

  

Any trajectory on an invariant -torus  carrying quasi-periodic motions is dense in 

. On the other hand, if the frequencies 1, ,   of conditionally periodic motions on 

 satisfy exactly r  independent resonance relations 
 

0k

   with 

   \ 0k

 , 

1, , r   (1 r  , the number r  is called the resonance multiplicity), then  is 

foliated into invariant  r -tori carrying quasi-periodic motions with the same 

frequency vector ˆ r  . Resonant invariant tori carrying conditionally periodic 

motions are therefore highly ―degenerate‖ and impossible in generic (Hamiltonian as 

well as non-Hamiltonian) systems. 

 

Being inspired by Theorems 2.1 and 2.2 above, one could expect to encounter 

continuous two-parameter families of invariant 2-tori in Hamiltonian systems, each 

torus carrying conditionally periodic motions with some frequencies  1   and  2   

where   denotes the two-dimensional parameter of the family.  

 

Nevertheless, it is not hard to realize that such families cannot exist as persistent 

structures. Indeed, if the frequencies  1   and  2   depend continuously on  , 

then, generally speaking, they become commensurable for some   (i.e., the 

corresponding 2-torus becomes resonant), and such values of   constitute a dense set. 

But generic systems do not admit invariant 2-tori foliated into closed trajectories with 

the same period. Invariant -tori of dimensions 2  turn out to be much ―subtler‖ 

than equilibria and closed trajectories.  

 

Notwithstanding, one of the most important and astonishing discoveries of 20
th

 century 

mathematics is that Hamiltonian systems with n  degrees of freedom do possess 

persistent -parameter families of invariant -tori carrying quasi-periodic motions for 

each 2, , n . But these families are not continuous; they are Cantor-like (the 

parameter labeling the tori ranges in a nowhere dense subset of  of positive 

Lebesgue measure). Precise statements describing such families will be given below in 

Section 5.1.  

 

The ubiquity of invariant tori carrying conditionally periodic motions in dynamical 

systems stems, in the long run, from the fact that any finite-dimensional connected 
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compact Abelian Lie group is a torus (where the group operation is the addition). 

  

Throughout this chapter, all the invariant tori in Hamiltonian systems we deal with carry 

conditionally periodic motions. It is worthwhile to emphasize, however, that a 

Hamiltonian system can possess an invariant -torus with any prescribed dynamics 

 f  ,  . Indeed, consider a Hamiltonian system with  degrees of freedom, 

phase space variables I  ,   ( I  ranging near the origin), the symplectic 2-

form 1 1dI d dI d dI d        , and the Hamilton function 

   1 1I f I f   . The corresponding equations of motion are  

 

   
 1

1 , ,i i i

i i

f f
I I I f

 
 

 

 
    

 
 

 

1, ,i  . The -torus  0I   is invariant, the induced flow being given by the 

equation  f  . Nonetheless, it is invariant tori carrying quasi-periodic motions that 

are typical in Hamiltonian systems.  

 

3. Integrable and Partially Integrable Systems 

 

First we consider exceptional Hamiltonian systems which admit smooth families of 

invariant tori carrying conditionally periodic motions. Such families occur in 

Hamiltonian systems exhibiting additional (besides the autonomous Hamilton function 

itself) first integrals (in the whole phase space or within a certain invariant surface).  

 

Recall that a submanifold M  of a 2n -dimensional symplectic manifold 2nW  is said to 

be isotropic if the restriction of the symplectic 2-form to M  vanishes (and, 

consequently, dimM n ). A submanifold 2nM W  is said to be Lagrangian if it is 

isotropic and its dimension is equal to the maximal possible value n . Two functions on 
2nW  are said to be in involution if their Poisson bracket vanishes. If functions 

1, , mF F  on 2nW  are independent and pairwise in involution then m n .  

 

According to M. R. Herman’s theorem (1988), an invariant torus of a Hamiltonian 

system is necessarily isotropic (and, consequently, its dimension does not exceed the 

number of degrees of freedom) provided that it carries quasi-periodic motions and the 

symplectic 2-form is exact.  

 

3.1. Action-Angle Variables. Liouville–Arnold Theorem  

 

Hamiltonian systems with n  degrees of freedom that have n  independent integrals in 

involution are described by the following fundamental theorem.  

 

Liouville–Arnold theorem: Suppose that an autonomous Hamiltonian system with n  

degrees of freedom and Hamilton function H  possesses n  smooth integrals 
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1 2, , , nF H F F  that are pairwise in involution. Let M  be a connected component of 

one of the common level surfaces  ,1i iF c i n    of these integrals, and let the 

differentials of the functions 1, , nF F  be linearly independent at each point of the set 

M  (in other words, let the rank of the Jacobi matrix of these functions be equal to n  

everywhere on M ). Then M  is a smooth Lagrangian submanifold of the phase space. 

Moreover, assume that whenever a trajectory of any of the Hamiltonian systems with 

Hamilton functions 1, , nF F  lies on M , it is defined for all t . Then:  

a) The surface M  is diffeomorphic to the product ns s  of the s -torus s  

and the  n s -dimensional Euclidean space ns  for a certain s  in the range 

0 n s .  

b) In ns s , one can introduce coordinates 

 1, , ,    s
s  1, , n

nx x x 
  s
s  in which the Hamilton equations 

with Hamilton functions  1iF i n   on M  take the form  

 

,j ji l lix a    

with constant ji ,   1 ,1lia j l n    s s .  

c) The Hamilton equations with Hamilton functions 1, , nF F  can be integrated by 

quadratures.  

d) Suppose additionally that the manifold M  is compact, i.e., ns  (in this case, 

the condition of infinite extendibility of the trajectories on M  is fulfilled 

automatically). Then some small neighborhood of the surface M  in the phase 

space is diffeomorphic to the product 
nD  of an open domain D  in the n -

dimensional Euclidean space 
n
 and the n-torus 

n
 and, moreover, there are 

coordinates  1, , nI I I D  ,  1, , n
n     in 

nD  with the 

following properties:  

 

i) the torus M  is given by the equation 
*I I  for a certain 

*I D ;  

ii) the functions 1, , nF F  in the variables  ,I   depend on I  only;  

iii) the symplectic 2-form is 1 1 n ndI d dI d dI d        .  

  

In particular, properties ii) and iii) imply that in the coordinates  ,I  , the Hamilton 

equations with Hamilton functions  1iF i n   in a neighborhood of the manifold M  

have the form  

 

 0, .iI F I I     

 

The name of this theorem reflects landmark contributions by J. Liouville (1855) and V. 

I. Arnold (1963). In the literature, the theorem is also referred to as the action-angle 

theorem, Arnold–Liouville theorem, Arnold theorem, Arnold–Jost theorem, Liouville–

Arnold–Jost theorem, or Liouville–Arnold–Mineur theorem (with any order of the 
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people involved). These names remind one of contributions by H. Mineur (1936) and R. 

Jost (1968).  

 

A Hamiltonian system with Hamilton function H  satisfying the hypotheses of this 

theorem is said to be completely integrable or Liouville integrable (in a neighborhood of 

the manifold M ). The coordinates  ,I   one speaks of in item d) of the theorem are 

called the action-angle variables. Under the hypotheses of item d), a neighborhood of 

the manifold M  is foliated into Lagrangian invariant n -tori  constI   (called 

Liouville tori) of the completely integrable system ( M  is one of these tori), the motions 

on the tori being conditionally periodic with frequency vectors    I H I I    . 

 

For instance, a Hamiltonian system with one degree of freedom is Liouville integrable 

in any domain where there are no equilibrium points and each trajectory is infinitely 

extendible. If a planar Hamiltonian system possesses a family of closed trajectories  , 

then the actions corresponding to these trajectories are equal (up to an arbitrary additive 

constant) to  Area 2  where  Area   are the areas enclosed by the trajectories   

(the area element being given by the symplectic 2-form).  

 

While speaking of completely integrable Hamiltonian systems, one almost always has 

in view the case of compact common level surfaces of the integrals, i.e., item d) of the 

Liouville–Arnold theorem. In the present chapter, we will observe this rule.  

 

3.2. Partially Integrable Systems  

 

Some Hamiltonian systems with n  degrees of freedom encountered in practice admit 

smooth 2 -dimensional invariant surfaces foliated into isotropic invariant -tori 

carrying conditionally periodic motions, 2 1n   . Such systems are sometimes said 

to be partially integrable. For instance, consider an autonomous Hamiltonian system 

with m  degrees of freedom and with the Hamilton function of the form  

 

       1
2

, , , , , ,H I z F I Q I z z R I z       (1) 

 

where  

 

a)  , ,I z  are the phase space variables,  1, ,I I I  ranges in an open domain 

D  ,  1, ,    ranges in , and  1 2, , mz z z  ranges near the origin of 

2m
; 

b) the symplectic 2-form is  

 

1 1

m

i i s s m

i s

dI d dz dz 

 

    ; 

 

c)  ,Q I   is a symmetric 2 2m m  matrix depending on I  and   while  3
R z , 
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this notation means that the Taylor expansion of the remainder R  in z  starts with terms 

of order 3.  

 

The Hamilton function H  affords the equations of motion  

 

         2 2 2
, , , ,I z I z z I z z         (2) 

 

where 

 

 
 

   
0

, , , ,
0

m m

m m

EF I
I I Q I

EI
  

  
     

  
 (3) 

( 0m  and mE  being the zero and identity m m  matrices, respectively).  

 

One sees that the 2 -dimensional surface  0z   is invariant and foliated into isotropic 

invariant -tori  0, constz I   carrying conditionally periodic motions with 

frequency vectors  I . The restriction of the system (2) to this surface is completely 

integrable with action-angle variables  ,I  . Recall the following important concepts.  

 

Definition 3.2.1: Let an invariant -torus  of an autonomous (not necessarily 

Hamiltonian) flow on an  N -dimensional manifold carry conditionally periodic 

motions with frequency vector  . This torus is said to be reducible (or Floquet) if 

in a neighborhood of , there exists a coordinate frame  , 
NX  ( X  ranging 

near the origin) in which the torus  itself is given by the equation 0X   and the 

dynamical system takes the Floquet form  X   ,  2
X LX X   with a 

 -independent N N  matrix L . This matrix is called the Floquet matrix of the torus 

, and its eigenvalues are called the Floquet exponents of . 

 

In other words, an invariant torus is reducible if the variational equations along this 

torus can be reduced to a form with constant coefficients. For instance, the invariant tori 

 constI   of a completely integrable Hamiltonian system are reducible with zero 

Floquet matrix.  

 

If the matrix Q  in the Hamilton function (1) does not depend on the angles  , then the 

invariant tori  0, constz I   are reducible. Their    2 2m m    Floquet 

matrices are block diagonal with blocks 0  and    I Q I  . The corresponding 

Floquet exponents are 0, ,0  and the eigenvalues of  I , these eigenvalues coming 

in pairs ,  . 

 

An isotropic invariant torus  of a Hamiltonian system is said to be lower dimensional 
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if  carries conditionally periodic motions and its dimension is less than the number of 

degrees of freedom. So, partially integrable systems possess smooth families of lower 

dimensional invariant tori, the number of parameters of the family being equal to the 

dimension of the tori. By the way, Lagrangian invariant tori carrying conditionally 

periodic motions are sometimes said to be maximal.  

 

- 

- 

- 
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considered along with many other topics.]  
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