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Summary 
 
Modal logic is a broad and rapidly expanding area of logic with applications to such 
diverse areas as computer science, linguistics and philosophy.   It deals with the logical 
behavior of such modal locutions as ‘must’ and ‘might’, ‘was’ and ‘will’, ‘ought’, and 
‘may’.  It specifies formal languages within which such locutions may be encoded, it lays 
down axioms and rules by which the locutions are governed, it sets up an interpretation for 
the resulting symbolism, and it proves various general results concerning the system and its 
interpretation.  
 
1. Introduction 
 
Modal logic is the resulting logic of possibility and necessity and of other such notions.  It 
began, as with logic in general, with Aristotle, who make some remarks on the ‘modal 
syllogism’; and various notions and principles of modal logic were extensively discussed in 
the middle ages.  But the subject came into its own only at the beginning of the twentieth 
century.   
 
The American philosopher-logician, C. I. Lewis, was bothered by Russell’s reading of the 
classical horseshoe ‘⊃’ as ‘implication’ and by his saying such things as that a falsehood 
implied every proposition or that every proposition implied a truth and Lewis therefore 
proposed a ‘strict’ or modal reading of implication, now signified by ‘→’, in place of 
Russell’s understanding of implication as ‘material’ or truth-functional.  Lewis and 
Langford [8] proposed various axiomatic systems of modal logic of increasing strength - 
ranging from the weakest, S1, through S2, S3 and S4, to the strongest, S5.  These systems 
provided the basis for much subsequent investigation, although the necessity- operator ‘~’ 
soon supplanted other modal operators as the favored modal primitive (~A might be 
defined as y→ A, where y is a standard tautology, and, conversely, A → B might be 
defined as ~(A ⊃ B)).      
 
This work was almost entirely formal; it was largely concerned with the deductive 
development of the various formal systems.  The next major breakthrough in the subject 
came with the development of a semantics.  Classical logic has a natural ‘modeling’ or 
semantics, first made explicit by Tarski [13 ].  An interpretation, or model, specifies a 
domain of objects for the quantifiers to range over and an extension for each predicate of 
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the language.  Relative to a model, it can be precisely stated when a closed formula of the 
language is true.  We may then define a formula to be valid when it is true under all 
models; and, given this conception of validity, it may then be shown that the valid formulas 
coincide with the theorems of the standard systems of classical predicate logic (the so-
called ‘completeness theorem’). (see Section 5.7 in Formal Logic) 
 
However, it was not at all clear how to achieve anything comparable in the case of modal 
logic.  The principal difficulty has to do with the original motivation for modal logic.  
Lewis was dissatisfied with Russell’s truth-functional reading of implication; he did not 
think that the truth-value of ‘S →T’ depended solely upon the truth-values of S and T; and 
similarly the truth-value of ‘~S’ does not solely depend upon the truth-value of S.  But the 
truth-functional reading provides us with a natural basis for a semantics, since it enables us 
to determine the truth-values of complex sentential formulas on the basis of their 
components; and, in the absence of a truth-functional determination of truth-value, it is not 
clear what to put in its place.   
 
Two main solutions to this problem were proposed.  According to the first, of Tarski and 
his school [14], the two truth-values of classical logic - the True and the False - were to be 
replaced by a range of different truth-values.  One might intuitively think of these values as 
the propositions expressed by the various formulas of the language though, from the formal 
point of view, they were simply regarded as elements from an arbitrary Boolean algebra.  
Given the assignment of the ‘proposition’ p to A, the proposition assigned to ~A could 
simply be taken to be the result N( p) of applying an appropriate necessity-operation N to 
the proposition p .  The various axioms of different modal logics would then correspond to 
various constraints on the operation.  The axiom ~A ⊃A’, for example, would correspond 
to the condition that N( p) ≤ p, for ≤ the relation of inclusion within the Boolean algebra.  
Under a suitable choice of constraints, completeness for many of the standard systems of 
modal logic could then be established.        
 
According to the other, later approach of Kripke and others [7], the two truth-values of 
classical logic were to be relativized to an index or ‘world’.  Thus instead of talking of the 
truth or falsehood of a formula simpliciter, we should talk of their truth-value at a world.  
Truth-functional formulas could then be evaluated in the usual manner at a world; ~A, for 
example, could be taken to be true at a world just in case A was false at that world.  
However, in evaluating a modal formula at a world, we would have to take account of the 
truth-values of its components not only at that world but also at other worlds.   In the 
simplest case, we could take ~A, for example, to be true at a world just in case A was true 
at all worlds.  But we might also want the worlds we look at in evaluating the formula to 
depend upon the world in question;  ~A would then be taken to be true at a world just in 
case A was true at all suitably related (or ‘accessible’) worlds.   Different axioms could 
then be seen to correspond to different constraints on the accessibility relation. The axiom 
~A ⊃ A, for example, would correspond to the accessibility relation being reflexive.  
Under a suitable choice of constraints on the accessibility relation, completeness for many 
of the standard systems of modal logic could again be established.   
 
We might think of the two approaches to the semantics for modal logic as corresponding to 
two strategies for extending the semantics for classical logic.  On the one hand, we might 
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extend the semantics ‘outwards’, replacing the two truth-values with many alternative 
truth-values.  On the other hand, we might extend the semantics ‘downwards’, making the 
assignment of  truth-values relative to an index or point of evaluation.  The first strategy 
was very natural at the time, since many-valued approaches to sentential logic had already 
been considered [12].  The second strategy was less natural within the context of sentential 
logic although it is, in a sense, already implicit in Tarski’s original treatment of 
quantificational logic.  For the assignment of a truth-value to an open formula (one 
containing free variables) must be taken to be relative to an assignment of values to those 
variables; and the evaluation of a quantified formula, such as ∀xA(x), relative to an 
assignment must be seen to depend upon the evaluation of the component formula, A(x), 
under suitably related assignments (those differing only in what is assigned to x).  Thus the 
general idea of relativized evaluation is already implicit in the semantics for 
quantificational logic, though not in its application to the purely sentential case. 
 
Since this breakthrough in the semantics, modal logic has developed in two different 
though complementary directions.  On the one hand, workers in the field have developed 
and investigated a great variety of different systems with a great variety of different 
applications - to philosophy and linguistics, for example, as well as to computer science 
and artificial intelligence.  On the other hand, they have conducted a general enquiry into 
the nature of these different systems.  The emphasis here is not on this or that system but on 
the ‘space’ of systems as whole.    
 
In what follows, I shall spell out the semantics to modal logic, using the possible-worlds 
approach rather than the less intuitive proposition-based approach, and I shall then attempt 
to provide some brief indication of the different ways in which the subject has been 
applied.  
 
2. Language and Logic 
 
2.1. Language   
 
The language L of classical sentential logic may be taken to consist of the following 
symbols: 
(i) the sentence letters p1, p2 , p3 ...; 
(ii) the truth-functional connectives ~, ∨,  ∧ and ⊃; 
(iii) the parentheses ( and ).   
 
2.2. Formulas  
 
 The formulas of L are generated by means of the following rules: 

(i) each sentence letter is a formula; 
(ii) if A is a formula then so is ~A; 
(iii) if A and B are formulas, then so are (A ∨ B), (A ∧ B) and (A ⊃ B).  

(see Section 5.1 in Formal Logic).  
 
The language L(~) of modal sentential logic is obtained by adding a modal operator ~ for 
‘necessity’ to the language L.  There is one additional rule for generating formulas: 
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(iv) If A is a formula, then so is ~A.   
 

We adopt the following abbreviations:  
◊A (‘possibly A’) for  ~~~A; 
A → B (‘A strictly implies B’) for ~(A ⊃ B).   
 

We follow standard notation in using ‘⊃’ for material implication and in using ‘→’ for 
various stricter forms of implication.  It should be noted that embeddings of ~ are allowed. 
 Thus ~~A or ~A ⊃ ~~A or ~(~A  ⊃ A)  ⊃  ~A are all formulas.  A large part of modal 
logic is concerned with the way ~ embeds.   
 
2.3. Systems  
 
A modal system is characterized by a set of axioms and rules.  Say that a formula of L(~) is 
truth-functionally valid if it is a substitution-instance of a tautology of L.  The formula (~A 
∨ ~~A), for example, is truth-functionally valid since it is a substitution-instance of the 
tautology (p1 ∨  ~p1).  The axiom and rules for the minimal modal system K are then as 
follows: 
Truth-functionality.     All truth-functionally valid formulas; 
Distribution.               ~ (A  ⊃ B)  ⊃ (~A  ⊃ ~B),  
Modus Ponens.            A, A  ⊃ B/ B   
Necessitation.              A/~A. 
 
The theorems of the system K are all those formulas that can be obtained from the axioms 
by means of the rules.  To be more exact, the set of K-theorems is the smallest set to 
contain the axioms of Truth-functionality and Distribution and to be closed under the rules 
of Modus Ponens and Necessitation (thus if A and A  ⊃ B are in the set then so is B and if 
is A is in the set then so is ~A). We write ‘_K A’ to indicate that A is a theorem of K (and 
similar terminology will be adopted for other systems of modal logic). What motivates the 
choice of system is that it is the weakest to which semantic techniques described below will 
apply. 
 
2.4. Meta-theorems  
 
Let us note two basic results concerning the deductive power of K.  They will be useful in 
establishing completeness below and are also often useful in establishing that particular 
formulas are theorems.  Say that B is a truth-functional consequence of the set of formulas 
Δ if there are formulas A1, A2, ... ,An of Δ, n ≥0, for which (A1 ⊃ (A2 ⊃ ... ⊃(An ⊃ B) ...)) is 
truth-functionally valid; and say that B is a K-deducible from Δ if there are formulas A1, A2 

, ...., An of Δ, n ≥0, for which (A1 ⊃ (A2 ⊃ ... ⊃(An ⊃ B) ...)) is a K-theorem.  We write ‘Δ 
|K B’ (or ‘A1, A2 , ...  |K B’ when Δ = {A1, A2 , ...} or  ‘Δ | B’ when the system is clear 
from the context) to indicate that A is K-deducible from Δ.  
 
Lemma 1 
 
(i) (TFC) Truth-functional consequences of K-theorems are K-theorems; 
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(ii) (Generalized Distribution) If A1, A2 , ... , An   |K B, then ~A1, ~A2 , ..., ~An  |K ~B. 
 
Proof (i) Suppose that B is a truth-functional consequence of A1, A2 , ... , An, i.e.  
(A1 ⊃ (A2 ⊃ ... ⊃(An ⊃ B) ...)) is a K-theorem.  If each of A1, A2 , ... , An is a K-theorem, it 
follows by n applications of modus ponens that B is a theorem.   
(ii)  Suppose that A1,A2 , A3 ... , An  |K B, i.e. that (A1 ⊃ (A2 ⊃(A3 ⊃... ⊃(An ⊃ B) ...))) is a 
K-theorem.  By the rule of Necessitation ~ (A1 ⊃ (A2 ⊃ (A3  ⊃... ⊃(An ⊃ B) ...))) is a K-
theorem; by the Distributivity axiom, ~ (A1 ⊃ (A2 ⊃(A3  ⊃ ... ⊃(An ⊃ B) ...))) ⊃(~A1 ⊃ ~ 
(A2 ⊃ (A3 ⊃... ⊃(An ⊃ B) ...))) is a K-theorem; and so by modus ponens, (~A1 ⊃ ~ (A2 
⊃(A3 ⊃ ... ⊃(An ⊃ B) ...))) is a K-theorem.  We may show in a similar way that ~ (A2 ⊃ 
(A3  ⊃ ... ⊃(An ⊃ B) ...)) ⊃ (~A2 ⊃ ~ (A3  ⊃ ... ⊃(An ⊃ B) ...)) is a K-theorem; and so by 
part (i) of the lemma, ~A1 ⊃ (~A2  ⊃ ~ (A3 ... ⊃(An ⊃ B) ...)) is a K-theorem.  Continuing 
in this way, we may drive ~ successively inwards through the implications, thereby 
establishing the K-theoremhood of (~A1 ⊃ (~A2 ⊃ ... ⊃(~An ⊃ ~B) ...)).     
 
3. Semantics  
 
We describe the possible worlds semantics for modal logic.   
 
3.1. Models  
 
A K-model M is an ordered triple (W, R, φ), where W is a non-empty set, R is a binary 
relation on W (i.e. R ⊆ W × W), and φ is a function taking each sentence-letter p1, p2, p3 ... 
into a subset of W.  Intuitively, W is the set of ‘worlds’, relative to which formulas are 
evaluated, R is an accessibility-relation on worlds, holding between worlds w and v when v 
is relevant to the evaluation of a necessity formula at w, and φ is a ‘valuation’ that 
specifies, for each sentence-letter p, the set of worlds φ(p) in which p is true.   An example 
of a K-model may be obtained by letting: 
W = {0, 1, 2, ...}; 
R = {(m, n): n = m + 1}; and 
φ = {(pn, {n}): n = 0, 1, 2, ...}.   
 
Thus in this model, each sentence-letter pn is true at exactly the one world n and the only 
world accessible from a given world m is its ‘successor’ n + 1.  (We might think of the 
worlds as ‘days’, starting with day 0 and continuing into the infinite future; accessibility is 
the ‘tomorrow’ relation; and pn is sentence stating that it is day n.)  
 
3.2. Truth  
 
Given a K-model M =(W, R, φ), we may define when a formula is true at a world of the 
model.  We use the notation ‘w Ö A’ to indicate that A is true at w (or ‘w ÖM A’ if we 
wish to be explicit about the underlying model M).  The definition is as follows: 
M(i)    w Ö p iff  w ∈ φ(p), for any sentence-letter p; 

M(ii)   w Ö ~B iff it not the case that w Ö B; 

M(iii)  w Ö  B ∨ C iff  wÖ B or w Ö C (and similarly for ∧ and ∈); 
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M(iv)  w Ö ~B iff v Ö B whenever w R v. 
It is readily determined on the basis of these clauses and the abbreviations that have been 
laid down that: 
M(v)   w Ö ◊B iff v Ö B for some v for which w R v; and  

M(vi)  w Ö B → C iff v Ö C whenever w R v and v Ö B.   
 
A possibility formula ◊B is true at a world just in case the possibilized formula B is true at 
some accessible world; and a strict implication B → C is true at a world just in case the 
consequent C is true in any accessible world in which the antecedent B is true.  
   
Let us illustrate with the example-model above (in which we might think of ‘~’ as meaning 
tomorrow).  The sentence-letter pn will be true at the world n (i.e. n Ö pn) given that n ∈ 
φ(pn).    
 
Since n - 1 R n for n > 0, it follows that ◊pn is true at n-1 (i.e. n-1 Ö ◊pn).  Use ◊m for ◊◊ ... 

◊ (m times).  It then follows, for n > m, that ◊m pn is true at n - m (i.e. n - m  Ö ◊m pn).  The 

reader may readily establish the converse, viz. that k  Ö ◊m pn only if k = n - m; and so ◊m 
pn  ⊃ ◊l pn will be false at the world n - m whenever l ≠m.     
 
3.3. Validity   
 
We say that a formula A is true in a model M = (W, R, φ) if it true in every world w ∈W of 
the model; and we say that a formula A is K-valid if it is true in every model.  We write 
ÖKA to indicate that the formula A is K-valid.  We may show, for example, that any 
instance ~(A  ⊃ B)  ⊃ (~A  ⊃ ~B) of the Distribution axiom is K-valid.  For take any 
model M = (W, R, φ) and world w ∈W and suppose that w Ö ~ (A  ⊃ B) and w Ö ~A.  

We must then show that w Ö ~B.  But if w Ö ~ (A  ⊃ B) then v Ö B whenever v  Ö A 

and w R v; and if w  Ö ~A, then v ÖA whenever w R v.  So v Ö B whenever w R v; and 

consequently w Ö ~B, as required. On the other hand, the formula  
◊mpn  ⊃ ◊l pn, for n > m and l ≠m, is not K-valid since it is not true at the world n - m in the 
example model above. 
 
- 
- 
- 
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