OPTIMAL OPERATION OF COMBINED HEAT AND POWER BASED POWER SYSTEMS IN LIBERALIZED POWER MARKETS

Aiying Rong
Technical University of Lisbon, Portugal

Risto Lahdelma
Aalto University, Finland

Keywords: combined heat and power; micro-CHP; microgrid; liberalized power markets; unit commitment; economic dispatch; operation planning; uncertainties; price-taker; decomposition; intelligent techniques; linear programming; mixed integer programming; non-linear programming; stochastic programming; scenario analysis; simulation; risk analysis;

Contents

1. Introduction
2. CHP systems and liberalized power markets.
 2.1. CHP Production Technologies
 2.1.1. Steam Turbines
 2.1.2. Gas Turbines
 2.2. Characteristics of CHP Production
 2.3. Impact of Liberalized Power Markets
3. CHP system modeling
 3.1. Framework of CHP System Modeling
 3.2. CHP Plant Model
 3.2.1. Convex CHP Plant Model
 3.2.2. Non-Convex CHP Plant Model
 3.2.3. Non-CHP Component Model
 3.3. Deterministic Unit Commitment (UC) and Economic Dispatch (ED) Problem Modeling
 3.4. Considering Uncertainties in the CHP System
 3.4.1. Uncertainties Involved in the CHP System
 3.4.2. Modeling Uncertainties in the CHP System
 3.4.3. Incorporating Uncertainties in the CHP System Model
4. Solution approaches to deterministic CHP models
5. Optimization under uncertainty
 5.1. Simulation Optimization
 5.2. Scenario Analysis
 5.3 Stochastic Optimization
 5.4. Fuzzy Optimization
6. Concluding remarks
Acknowledgements
Glossary
Bibliography
Biographical Sketches

©Encyclopedia of Life Support Systems (EOLSS)
Summary

In this chapter, we present combined heat and power (CHP) production technologies and related modeling techniques of the CHP plant. Then we discuss the impacts of liberalized power markets on CHP systems and present a typical unit commitment model for a CHP system with different types of components. Next, we provide a comprehensive review on the state-of-art of models and decision support tools for optimizing CHP systems, focusing on how to deal with uncertainties in the liberalized power markets. Finally, we summarize typical solution techniques used in the literature and general requirements for the models and optimization tools in the liberalized power markets.

1. Introduction

Liberalized electric power markets and combined heat and power (CHP) production technologies are actively promoted by extensive political incentives in many countries. Europe has actively incorporated CHP into its energy policy via the CHP Directive (CHP directive, 2004). The US DOE (Department of Energy) has an aggressive goal to raise the share of CHP to 20% of the US generation capacity by the year 2030 (http://www.aceee.org/policy-brief/combined-heat-and-power-and-clean-distributed-energy-poli). CHP has also received a good deal of attention by the governments of the developing countries (IEA, 2007). A liberalized power market was introduced in the early eighties in Chile (Del Sol, 2002). Since early nineties, the liberalization has been in progress in the developed countries, including UK, Norway, Sweden, Finland, USA and New Zealand. Currently, the liberalization is going on all over the world. The objective of liberalization of the power market is to achieve higher energy efficiency and lower consumer prices by introducing conditions of intensified commercial competition (Meyer, 2003). CHP production is a leading technology to respond to the market demands. It is also an excellent technology for promoting a fair competition in the liberalized power market. It is a technology for improving efficiency of energy production.

The increasing environmental concerns urge promotion of environmentally sound energy production technologies. Energy policy is giving priority to the problem of global warming. Both energy efficiency and development of new and renewable energy technologies (European Commissions, 2005) are considered key elements for dealing with this problem. The high efficiency of CHP production leads to significant savings in fuel and emissions, typically between 10-40% depending on the technique used and the system replaced (Madlener and Schmid, 2003).

CHP production means the simultaneous production of useful heat and electric power. When steam or hot water is produced for an industrial plant or a residential area, power can be produced efficiently as a by-product. Vice versa, surplus heat from an electric power plant can be used for industrial purposes, or for heating space and water. CHP is considered an environmentally beneficial technology because of its high energy efficiency when compared to conventional condensing power plants. The energy efficiency of a gas turbine is typically between 36-40% when used for power production only, but over 90% if also the heat is utilized.
Traditional CHP can find application in district heating, large commercial and institutional buildings and different industries such as paper, wood, food and semiconductors (Resource Dynamics Corporation, 2001). Recently, micro CHP systems are booming. Micro CHP implements the well established large scale CHP technologies to individual residential houses or small office buildings. In addition, CHP facilities are components of distributed energy resource (DER) systems, which are small-scale power generation technologies used to provide an alternative to or an enhancement of the traditional electric power system. The operation of DER systems is related to microgrids, which are localized groupings of electricity generation, energy storage, and loads that normally operate connected to a traditional centralized grid (macrogrids). The microgrid can function autonomously if it is disconnected from the macrogrid.

Liberalization of the power markets, technological innovation and a growing tendency towards sustainable development becomes an integral part of energy policy planning. New markets and the increased interest in new production technologies will result in a significant change in energy system planning and operation. The energy sector is one of the core application areas in operations research, artificial intelligence techniques and management sciences because energy systems are large and activities associated with operations of the energy systems are complicated. The operation of energy systems is managed based on operational (low-level) production planning.

The goal of production planning in the liberalized power markets is to determine the optimal strategies over a time horizon (day, week, month or year) so that the overall net profit can be maximized subject to production constraints. The production planning can be divided into three levels: Strategic (long-term decisions) such as alliances, long-term contracts and capacity investments; tactical (medium-term decisions) such as maintenance scheduling, fuel allocation, emissions allowance; and operational (short-term decisions) such as unit commitment (UC) and bidding. However, the usage of long-, medium- and short-term planning is a relative term and depends on the application background. E.g., in the UC context, a planning horizon exceeding one week may refer to long-term planning (Thorin, Brand and Weber, 2005; Voorspools and D’haeseleer, 2003).

The complexities of the planning problems vary depending on the scale of the energy systems and information involved in the decision-making. The production planning of the CHP system is inherently more complicated than power-only generation planning. The interdependence between heat and power generation imposes great challenge in production planning. This means that planning must be done in coordination between heat and power. Moreover, the liberalized power market introduces more uncertainties than before. Production planning needs assistance from a wide set of sophisticated modeling, simulation, optimization, and forecasting tools. The necessary optimization methods include linear programming (LP), non-linear programming (NLP), mixed integer programming (MIP) and stochastic programming. The complexity of the problems may also require application of various decomposition techniques such as Lagrangian decomposition, Dantzig-Wolfe decomposition and Benders’ decomposition.

Here we intend to introduce the main modeling methods for CHP production technologies and give a comprehensive survey on the state-of-art models and decision
supports tools for the operational planning of the CHP systems in liberalized power markets. We also address optimization under uncertainty. The chapter is organized as follows. In Section 2, we give an overview of CHP production technologies and systems; and how liberalized power markets affect their operation. In Section 3, we give a uniform modeling technique for the components of CHP systems and then present a general deterministic UC model for the CHP system and next discuss how to incorporate uncertainties in the CHP model. In Section 4, we describe the solution approaches for deterministic CHP models. In Section 5, we discuss optimization under uncertainty.

2. CHP Systems and Liberalized Power Markets

Figure 1 shows different types of components of a CHP system in liberalized power markets. The components are roughly classified into four categories:

- Power and heat generation components: These include actual CHP plants, but also separate power and heat production components such as condensing power plants and district heat stations.
- Power and heat storage components such as batteries and hot water tanks
- Power and heat trade components such as various bilateral purchase and sales contracts and
- Power and heat demand side management (DSM) with the target to reduce peak power and heat demand by introducing different tariffs for peak and off-peak energy consumption.

Figure 1. Different types of components of a CHP system in liberalized power markets.

Here it is worth mentioning that renewable energy sources such as solar power, wind power and hydropower can also become components of CHP systems. The inclusion of separate power and heat components makes the system more flexible and reliable under variable demand. In the following, we mainly introduce the conventional CHP production technologies.
2.1. CHP Production Technologies

CHP production technologies are conventional power generation systems with the means to make use of the thermal energy remaining in exhaust gases, cooling systems, or other thermal energy waste stream to improve the overall efficiency of the system. Typical CHP production prime movers include: combustion (gas) turbines, reciprocating engines, boilers with steam turbines, micro-turbines and fuel cells. EPA_CHP (2008) provided a detailed discussion about different CHP technologies. Here we briefly discuss the major characteristics of gas turbines and steam turbines as well as related advanced production technologies. On the one hand, the available sizes of gas turbines and steam turbines are wide: from a few dozen kW to a few hundred MW, covering almost all of the application capacities except micro applications. On the other hand, steam turbines and gas turbines account for a large share of power production capacities for sale to the grid. Power is a high value commodity as compared with heat. Advanced CHP production technologies are developed to improve the power efficiency of CHP production.

2.1.1. Steam Turbines

Steam turbines are widely used for CHP applications in the USA and Europe. Steam turbines are one of the oldest and most versatile prime mover technologies still in general production used to drive a generator or mechanical machinery. Power generation using steam turbines has been in use for about 100 years. Figure 2 shows a schematic boiler/steam turbine system.

![Figure 2. A schematic boiler/steam turbine system.](image)

The thermodynamic cycle for the steam turbine is the Rankine cycle. The cycle consists of a heat source (boiler) that converts water to high pressure steam. The water is first pumped to elevated pressure, which is medium to high pressure depending on the size of the unit and the temperature to which the steam is eventually heated. Then it is heated to boiling temperature corresponding to the pressure, boiled and superheated. The water is eventually transformed into pressurized steam. Next, the pressurized steam is expanded to lower pressure in a multistage turbine, then exhausted either to a condenser at vacuum conditions or into an intermediate temperature steam distribution system that delivers the steam to the industrial or commercial application. The condensate from the condenser or from the industrial steam utilization system is returned to the feed-water pump for continuation of the cycle.
Steam turbines used for CHP can be classified into two main types: backpressure and extraction as shown in Figure 3.

![Diagram showing backpressure and extraction turbines](image)

Figure 3. Back pressure and extraction turbines.

The backpressure turbine (Figure 3.1) exhausts its entire flow of steam to the industrial process or facility steam mains at conditions close to the process heat requirements. The exhaust pressure is controlled by a regulating valve to suit the needs of the process steam pressure. The extraction turbine (Figure 3.2) has opening(s) in its casing for extraction of a portion of the steam at some intermediate pressure. The extracted steam may be used for industrial process purpose or sent to boiler feed-water heaters to improve overall cycle efficiency. Extraction flows may be controlled with a valve, or left uncontrolled.

Steam turbines exhaust steam in a partially condensed state, at a pressure well below atmospheric to a condenser when used for purely power generation. Therefore, the traditional steam turbine based power plants are called condensing power plants. Between power (only) output of a condensing steam turbine and combined heat and power output of a backpressure steam turbine, essentially any ratio of power to heat output can be supplied to a facility.

Backpressure steam turbines can be obtained with a variety of backpressure controls, further increasing the variability of the power-to-heat ratio. For the steam turbine based CHP plant, power is a byproduct of heat generation with the system optimized for steam production. Consequently, the power efficiency of the steam turbine based CHP plant is not higher, from 10% to 30%.

However, the overall efficiency is high, approximating the efficiency of the steam boiler (70-90%) depending on operating conditions and age of the boiler. One of the advanced CHP production technologies is the backpressure plants with condensing and auxiliary cooling options to further improve the power efficiency of the steam turbine based CHP plants.

Here it is worth mentioning the role of the boiler for the steam turbine based generation system. The boiler acts as a buffer to separate fuels and the turbines and the fuels are burnt in the boiler. This separation of functions enables steam turbines to operate with...
an enormous variety of fuels from solid fuels such as coal, biomass residuals to liquid fuels such as oil to gaseous fuels such as natural gas.

2.1.2. Gas Turbines

As compared with steam turbines, gas turbines operate on the thermodynamic cycle known as the Brayton cycle. Heat is a byproduct of power generation for the gas turbine based CHP system and the power efficiency of the simple cycle gas turbine approximates 40%. The fuel of traditional gas turbine is natural gas. The modern gas turbine has demonstrated distinctive ability to accept a wide variety of gaseous and liquid fuels. To accept solid fuels, a gasifier, which transforms solid fuels into gases, needs to install. Figure 4 shows a schematic gas turbine system.

![Figure 4. A schematic gas turbine system.](image)

Gas turbine system has an upstream compressor coupled to a downstream turbine with a combustion chamber in-between. In a Brayton cycle, atmospheric air is compressed in a compressor and mixed with gas in the combustor, ignited and heated and then expanded in the turbine to generate power and at the same time exhaust heat. The quality of exhaust heat is high. For a simple cycle CHP application, a heat recovery heat exchanger can be used to recover the heat in the turbine exhaust and converts it to useful thermal energy usually in the form of steam or hot water to satisfy industrial or district heating steam requirements. Alternatively, this high temperature heat can be recuperated to drive a steam turbine in a combined cycle plant so that the efficiency of the power generation can be improved. Combined steam and gas cycle (CSGC) is one of the advanced CHP production technologies with higher power efficiency, which can extract steam at an intermediate pressure for use in industrial processes or district heating. The power efficiency of the CSGC CHP plant approximates 60%.

2.2. Characteristics of CHP Production

There are several characteristics in CHP production, which complicate the operation of a CHP system. First, electric power and heat are two energy commodities in a CHP system. They have one thing in common: they cannot be stored efficiently over a long period of time. Thus, it is necessary to balance supply and demand over a short period of time. Second, because heat cannot be transported economically over a long distance, CHP plants should be located close to where the heat can be consumed and are thus embedded in electricity networks, limiting transmission and distribution losses.
Therefore, heat must be balanced locally over a small area while power can be balanced either locally or globally (over a large area). Finally, interdependence of heat and power generation means that the production planning must be done in coordination.

These characteristics in conjunction with the new production technologies described in Section 2.1 pose challenge over the operation of a CHP system. It requires sophisticated models and efficient solution tools for handling the operation of the system efficiently.

Bibliography

Andersen, A.N., & Lund, H. (2007). New CHP partnerships offering balancing of fluctuating renewable electricity productions. Journal of Cleaner Production, 15, 288-293. [This paper presents solutions integrating fluctuating renewable electricity supplies, such as wind power, into electricity systems using small and medium sized CHP plants].

Ashok, S., & Banerjee, R. (2003). Optimal operation of industrial cogeneration for load management. IEEE Transactions on Power Systems, 18, 931-937. [This paper presents a generalized formulation to determine the optimal operation strategy of industrial CHP systems and applies NT based method to solve the problem].

©Encyclopedia of Life Support Systems (EOLSS)

Bengiamin, N.N. (1983). Operation of cogeneration plants with power purchase facilities. *IEEE Transactions on Power Apparatus Systems PAS*, 102(10), 3467-3472. [This paper presents an ED scheme of a CHP system based on the power market mechanism].

Brujic,D., Ristic,M., &Thoma, K. (2007). Optimal operation of distributed CHP Systems for participation in electricity spot markets. *International Conference on ‘computer as a tool’*(pp. 1463-1469). [This paper presents a tool for optimizing the distributed CHP systems under the deregulated power market].

Casella, F., Maffezzoni, C., Piroddi, L., & Pretolani, F. (2001). Minimising production costs in generation and cogeneration plants. *Control Engineering Practice*, 9, 283-295. [This paper presents a mathematical model for dealing with the ED of a CHP system under the deregulated power market].

Corso, G., Di Silvestre, M. L., Ippolito, M. G., Sanseverino, E. R., Zizzo, G. (2010). Multi-objective long term optimal dispatch of distributed energy resources in micro-grids. *UPEC 2010* (pp. 1-5). [This paper models the UC problem of then DER system considering multiple objectives such as minimizing generation cost, emissions and line losses].

EPA_CHP. 2008. Catalog of CHP technologies. US environmental protection agency, combined heat and power partnership. www.epa.gov/chp/documents/catalog_chptech_full.pdf [This is a catalog for introducing different CHP production technologies].

http://ec.europa.eu/energy/res/biomass_action_plan/doc/2005_12_07_comm_biomass_electricity_en.pdf. [This is an official document from European Union to support the renewable energy sources].

Geidl, M., & Andersson G. (2007). Optimal power flow of multiple energy carriers. *IEEE Transaction on Power Systems, 22*(1), 145-155. [This paper presents an approach for combined coupled power flows of different energy infrastructures such as electricity, gas and district heating systems].

Gu, W., Wu, Z., & Yuan, X (2010). Microgrid economic optimal operation of the combined heat and power system with renewable energy. *IEEE Power and Energy Society General Meeting* (pp.1-6). [This paper deals with the problem of economic operation of a CHP system including wind energy, PV, heat recovery boiler and battery].

Handschin, E., Neise, F., Neumann H., & Schultz, R. (2006). Optimal operation of dispersed generation under uncertainty using mathematical programming, *Electrical Power & Energy Systems, 28*, 618–626. [This paper presents a mathematical model for different kinds of dispersed generation with respect to their technical characteristics as well as the optimization technique which is used to solve problems under the existing uncertainty].

Heussen, K., Koch, S., Ulbig, A., & Andersson, G. (2010). Energy storage in power system operation: the power nodes modeling framework. *IEEE PES ISGT (Europe) (pp. 1-8)*. [This paper presents a unified approach for modeling non-dispatchable generation and significant storage capacities].

Houwing, M., Negenborn, R.R., & De Schutter, B.(2011). Demand response with micro-CHP systems. *Proceedings of the IEEE, 99*(1), 200-213. [This paper investigates to what extent domestic energy cost can be reduced with intelligent, price-based control concepts (demand response)].

Illerhaus, S. W., & Verstege, J. F.(1999). Optimal operation of industrial CHP-based power systems in liberalized energy markets. *IEEE Power Tech'99 Conference*, Budapest, Hungary. [This paper presents the implementation of a new method for the UC of an industrial CHP system and the new method is a dynamic search strategy based on MILP].

Illerhaus, S. W., & Verstege, J. F.(2000). Optimal operation of industrial IPPs considering load management strategies. *IEEE Industrial Application Conference* (pp. 901-908). [This paper presents a mathematical model representing IPS (industrial power system) to formulate the optimization problem].

Kienzle, F., & Andersson, G. (2010). Location-dependent valuation of energy hubs with storage in multi-carrier energy systems. *7th International Conference on the European Energy Market* (pp.1-6). [This paper presents a valuation method of energy hubs including storage devices and energy hubs is an integrated system of units (CHP plants and batteries), which allows the conversion and storage of multiple energy carriers]

Kim, H-M., & Kinoshita T. (2009). Multiagent system for microgrid operation based on power market environment. *Telecommunication Energy Conference* (pp.1-5). [This paper introduces a power market
model for efficient operation of the microgrid and proposes an agent based mechanism on the power market].

Lemar P.L. (2001). The potential impact of policies to promote combined heat and power in US industry. *Energy Policy*, 29, 1243-1254. [This paper reviews a portion of the study that examined the impact of the CHP technologies on the US industry and concludes that the policies can be developed to significantly reduce carbon emissions, increase energy efficiency and improve fuel diversity within the US industrial sector with little or no additional cost to US economy].

Linkevics, O., & Sauhauts, A. (2005). Formulation of the objective function for economic dispatch optimisation of steam cycle CHP plants. *2005 IEEE Russia Power Tech*. [This paper presents the formulation of optimization problem for the ED of steam cycle CHP plant and polynomial quadratic equations are applied to describe the interrelations between input steam and output heat and power of the steam turbine].

dispatch for the system consisting of thermal generators and wind turbines which are of stochastic nature.

Lombardi, P., Powalko, M., & Rudion, K. (2009). Optimal operation of a virtual power plant. *Power and Energy Society General Meeting* (pp.1-6). [This paper introduces and discusses the concept and architecture of a complex virtual power plant and focuses on the optimal operation of the virtual power plant].

MacGregor, P.R., & Puttgren, H.B. (1991). A spot price based control mechanism for electric utility systems with small power producing facilities. *IEEE Transactions on Power Systems*, 6(2), 683-690. [This paper presents a spot price determination procedure in the context of small power producing facility].

Makkonen, S. (2005). *Decision modeling tools for utilities in the deregulated energy market*. Ph.D. thesis, Research Report A93, Systems Analysis Laboratory, Helsinki University of Technology. [This monograph analyzes the different requirements for planning and optimization of energy systems between monopoly and deregulated market and presents decision support tools for utilities in the deregulated market].

Makkonen, S., Lahdelma, R., Asell, A.M., & Jokinen, A. (2003). Multi-criteria decision support in the liberalized energy market. *Journal of Multi-Criteria Decision Analysis*, 12(1), 27-42. [This paper presents multi-criteria decision support tools to the energy system in the deregulated power market].

Mao, M., Ji, M., Dong, W., & Chang, L. (2010). Multi-objective economic dispatch model for a microgrid considering reliability. 2010 2nd *IEEE Symposium on Power Electronics for Distributed Generation Systems* (pp. 993-998). [This paper presents a PSO algorithm to solve the multi-objective ED model for a microgrid to minimize production cost, customer outage cost and emission cost].

Marechal, F., & Kalitventzeff, B. (1998). Process integration: Selection of the optimal utility system. *Computers & Chemical Engineering (Supplementary)*, 22, S149-S156. [This paper presents a hybrid approach for combining MILP approach with expert system to determine the best combination of different energy production technologies].

Matic, J., & Krost, G. (2007). Computational intelligence techniques applied to flexible and auto-adaptive operation of CHP based home power supply. *2007 International Conference on Intelligent Systems Applications to Power Systems (pp. 1-7)*. [This paper discusses the application of computational intelligence techniques to improve the performance of micro CHP systems].

Menniti, D., Pinnarelli, A., & Sorrentino, N. (2009). Operation of decentralized electricity market in microgrids. *20th International Conference on Electricity Distribution (pp.1-4)*. [This paper presents a scheme to implement a local microgrid market linked to the macrogrid market].

©Encyclopedia of Life Support Systems (EOLSS)

Prousch, S., Breuer, C., & Moser, A. (2010). Optimization of decentralized energy supply systems. 7th International Conference on European Energy Market (pp. 1-6). [This paper presents a method for optimizing the operation of energy supply system based on a detailed model of new network customers].

Ramirez-Elizondo, L.M., Velez, V., & Paap, G.C. (2010). A technique for unit commitment in multiple energy carrier systems with storage. 9th International Conference on Environment and Electrical Engineering (pp. 106-109). [This paper presents a technique to include storage devices as part of a general UC framework for energy systems containing multiple energy carriers].

©Encyclopedia of Life Support Systems (EOLSS)
Razali, N. M. M., & Hashim, A.H. (2009). Microgrid operational decisions based on CFaR with Wind Power and pool prices uncertainties. *Proceedings of the 44th Universities Power Engineering Conference* (pp.1-5). [This paper applies stochastic simulation to evaluate the ratio of expected profit to expected cost of energy procurement, cash flow at risk and expected shortfall].

Resource Dynamics Corporation (2001), Assessment of replicable innovative industrial cogeneration applications. [This provides a comprehensive analysis of CHP technologies and applications].

1245. This paper presents specialized algorithms for the planning problem of a convex CHP system based on the special problem structure under the deregulated power market.

Rong, A., Lahdelma, R., & Grunow, M. (2010). Poly-generation planning: useful lessons from models and decision support tools (Book Chapter), pp 296-335, in the book “Intelligent Information Systems and Knowledge Management for Energy: Applications for Decision Support, Usage and Environmental Protection” (eds Kostas, Metaxiotis), IGI global publisher. [This chapter provides a comprehensive review of poly-generation planning at different decision levels].

Schulz, C., Roder, G., & Kurrat, M. (2005). Virtual power plants with combined heat and power micro-units. *International Conference on Future Power Systems* (pp.1-5). [This paper presents a method for integrating micro CHP units into the low voltage network].

Sinha, N., & Bhattacharya, T. (2010). Genetic algorithms for non-convex combined heat and power dispatch problems. *TENCON 2008-2008 IEEE Region 10 Conference* (pp. 1-5). [This paper presents GAs the ED of a CHP system including non-convex plants].

Sudhakaran, M., & Slochanal, S.M.R. (2003). Integrating genetic algorithms and tabu search for combined heat and power economic dispatch. *Conference on Convergent Technologies for the Asia-Pacific Region*. [This paper deals with the ED of a CHP system by combining GA and TS].

©Encyclopedia of Life Support Systems (EOLSS)

Takriti, S., Krasenbrink, B., & Wu, L.S.Y. (2000). Incorporating fuel constraints and electricity spot prices into stochastic unit commitment problem. Operations Research, 48(2), 268-280. [This paper deals with UC problem of a power only generation system under uncertainty based on scenario analysis and the resulting model is solved by LR and bender’s decomposition].

Tsay, M.T., Chang, C.Y., & Gow, H.J. (2004). The operational strategy of cogeneration plants in a competitive market. 2004 IEEE Region 10 Conference. [This paper presents an operational strategy for CHP plants in a competitive market based on IA].

Biographical Sketches

Aiying Rong received her master degree in Industrial Engineering and Engineering Management at Hong Kong University of Science and Technology and her Ph.D. degree in Computer Science (Algorithmics) at the University of Turku, Finland. During her PhD study, she was mainly involved in research on cogeneration planning under the deregulated power market and emissions trading scheme. Currently, she is working as a FCT research fellow in Cemapre (Centers for Applied Mathematics and Economics) at ISEG- Technical University of Lisbon, Portugal. Her research interests include operations, planning and scheduling of production activities in different industrial sectors such as the energy industry, the food industry, and the iron & steel industry. She has published papers in European Journal of Operational Research, International Journal of Production Research, International Journal of Production Economics,
ELECTRICAL ENGINEERING – Optimal Operation of Combined Heat and Power Based Power Systems in Liberalized Power Markets – Aiying Rong and Risto Lahdelma

Risto Lahdelma received his PhD at Helsinki University of Technology, Finland in 1994. Since 2000, he has been a full professor of computer science at University of Turku, Finland. He is currently the chairman of the Finnish Operations Research Society. His research interests include systems and operations research, energy management, intelligent systems, embedded algorithms and multi-criteria decision support. He has published papers in Operations Research, European Journal of Operational Research, Journal of Environmental Management, Environmental Management, Journal of Multi-Criteria Decision Analysis, Decision Support Systems, International Journal of Advanced Manufacturing Technology Applied Energy, Energy Conversion and Management, Socio-Economic Planning Science, Forest Policy and Economics. His email address is risto.lahdelma@tkk.fi.