HYDROLOGIC CYCLE AND WATER USAGE

Koichi Fujie
Department of Ecological Engineering, Toyohashi University of Technology, Japan

Hong-Ying Hu
ESPC, Department of Environmental Science and Engineering, Tsinghua University, China

Keywords: Water stocks, hydrologic cycle, water balance, water usage, water reuse.

Contents
1. Stocks of water on the Earth
2. Hydrologic cycle
3. Water balance and usage
4. Preservation and effective use of water resources
Glossary
Bibliography
Biographical Sketches

Summary

The stocks of water and the hydrologic cycle on the Earth are quantitatively described and the present statuses of water balances and usage in Japan and the USA are compared. The necessity and usefulness of wastewater reuse for saving the limited water resources in the world is also discussed.

1. Stocks of water on the Earth

Water is the origin of life. If there were not water on the Earth, no living things would have come into existence. The life of a living organism is maintained by water contained within its body. Water accounts for about 70% of the body-weight of adult humans, and as much as 80% of that of new-born babies. Generally, the body of a fish is about 75% water; jellyfish, however, contain as much as 96% water. An adult human needs to drink about two liters of water every day. In addition to sustaining the life of every cell, water is also used for many other purposes, such as temperature control, transportation, dissolving materials, washing, maintaining the functions of natural ecosystems, etc. Water is clearly one of the essential resources for human activities.

Water present everywhere on the Earth. It exits in the seas, lakes, ponds, rivers, and under the ground. It also exits in glaciers and mountains as ice and/or permanent snow. Water is also contained in living things, plants, soils and the atmosphere. The water located in lakes, ponds, and rivers is called surface water and that located under the ground is called groundwater or subsurface water. Fresh surface water and groundwater are major water resources for human activities. The stocks and location of water on the Earth are shown in Table 1.
<table>
<thead>
<tr>
<th>Location</th>
<th>Amount (10^3 km^3)</th>
<th>Percentage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceans</td>
<td>1,357,000</td>
<td>96.26</td>
</tr>
<tr>
<td>Subsurface</td>
<td>25,700</td>
<td>1.82</td>
</tr>
<tr>
<td>Rivers</td>
<td>1.4</td>
<td>0.00099</td>
</tr>
<tr>
<td>Freshwater lakes</td>
<td>91</td>
<td>0.0065</td>
</tr>
<tr>
<td>Saline lakes</td>
<td>85</td>
<td>0.0060</td>
</tr>
<tr>
<td>Glaciers (ice and permanent snow)</td>
<td>26,410</td>
<td>1.87</td>
</tr>
<tr>
<td>Soil</td>
<td>80</td>
<td>0.0056</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>13</td>
<td>0.00092</td>
</tr>
<tr>
<td>Living biomass</td>
<td>1.2</td>
<td>0.000085</td>
</tr>
<tr>
<td>Total</td>
<td>1,409,607</td>
<td></td>
</tr>
</tbody>
</table>

*The approximate values (the sum of the data does not equal to 100%)

Table 1. Stocks of water on the Earth
Data from Naganuma, 1978 and Masters, 1997

The water in the seas is estimated to be 1 357 000x10^3 km^3. This is based on the total area of the World Ocean being about 361x10^6 km^2, and the mean depth about 3800 m. More than 96% of the world’s water is located in the seas. The amount of groundwater is about 25 700 x 10^3 km^3, which accounts for about 1.82% of the total stock of water in the world, and half the total fresh water. The water in fresh lakes, ponds and rivers is 92 x10^3 km^3, which is only 0.007% of total water and 0.18% of fresh water. The amount of water in the forms of ice and permanent snow is about 26 410 x 10^3 km^3, which is nearly equal to the amount of groundwater.

The total area of glaciers and ice sheets in the world is about 16 x 10^6 km^2 (about 10% of the land area), and 90% of that is located in Antarctica. The amount of water in soils is about 80 x 10^3 km^3, which is similar to the volume stored in fresh lakes. The water contained in the atmosphere is only 13 x 10^3 km^3, or 0.0009% of total water. In addition to water vapor, it includes various natural phenomena such as clouds, rain and snow.

Bibliography

Jersey: Prentice Hall, Inc. [This book gives a brief and systematic introduction on principles of environmental engineering and science].

Biographical Sketches

Koichi Fujie is a professor in the Department of Ecological Engineering at Toyohashi University of Technology, Japan. He completed his PhD in environmental chemistry and engineering at Tokyo Institute of Technology; his PhD thesis was entitled “Oxygen transfer and power economy characteristics of biological wastewater treatments”. Professor Fujie’s research and teaching interests are focused on the sustainability of human society supported by industrial activities. He stresses that minimization of resource and energy consumption, with their environment loading, are essential for sustainability. His major research fields are water and wastewater treatment, development of material recycling technology, bioremediation and design of sound material cycle networks.

Hong-Ying Hu is a professor and deputy director of the Department of Environmental Science and Engineering at Tsinghua University. He obtained his master and PhD degrees at Yokohama National University, Japan. His major is environmental microbiology and biological engineering. His research area includes kinetic and ecological study on biodegradation of refractory toxic organic chemicals in natural and manmade ecosystems, bacterial community structure and function in ecosystems, biological and ecological technologies for environmental pollution control, and risk assessment and water quality control for wastewater reclamation and reuse.