GRAPEVINE BREEDING AND GENETICS

P. Tantasawat, O. Poolsawat and W. Chaowiset
School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Keywords: biotechnology, botany, conventional breeding, DNA fingerprinting, embryo rescue, genetic engineering, genetic map, genetic resource, genomic, in vitro selection, micropropagation, marker-assisted selection, molecular marker, mutation, polyploidy, quality, resistance, tissue culture, tolerance, yield.

Contents
1. Introduction
2. Botany and Taxonomy of Grapevines
3. Grapevine Genetic Resources
4. Inheritance and Genetic Analyses of Grapevines
5. Grapevine Improvement
6. Conclusions
Acknowledgments
Glossary
Bibliography
Biographical Sketches

Summary

The grapevine is one of the most important economic fruit crops that are widely grown in almost all continents. The fruits produced worldwide are mainly processed into wine. In addition, significant portions have also been used for fresh consumption, dried as raisins or processed into juice. The objectives of grapevine breeding vary according to its usage and often are region-specific. However, most breeding programs aim at combining high yield and high fruit quality with improved resistance to multiple diseases and pests, and/or increased adaptation to adverse environments. These desirable traits can be exploited from the vast genetic resources of the Vitis genus. Different methods have been used to incorporate useful traits including conventional breeding, mutation and polyploid breeding, and biotechnological approaches. Integration of these tools will allow breeders to meet with the increasing demands for novel grapevine varieties with improved yield and quality in an era of limited resources, increasing health and ecological awareness, as well as increasing environmental pressures.

1. Introduction

The grapevine is an economically important woody perennial fruit crop, cultivated in most of the continents of the world. Approximately 71% of the world’s harvest is processed into wine, 27% is consumed fresh and 2% is dried for raisins. In 2009, grapevine cultivation covered approximately 8 million hectares with ca. 67 million metric tons of fruit produced annually. Italy, China, United States, France and Spain
are the leading grapevine producers in the world. Other than these five countries, Turkey, Iran, Argentina, Chile, India, Australia and South Africa also produce grape in large quantities.

V. vinifera L. is the most widely cultivated *Vitis* species due to its adaptability to a wide range of temperate to subtropical or tropical conditions. It probably originated in the Mediterranean Basin and the Middle East, where it was domesticated 5,000 years ago. *V. vinifera* has given rise to over 14,000 cultivars grown in most of the cultivated areas worldwide. It is estimated that more than 90% of the world’s grapevines are either *V. vinifera* or *V. vinifera* hybrids. *V. vinifera* cultivars are usually of outstanding quality but they are susceptible to a variety of biotic and abiotic stresses. Therefore, grapevine improvement is necessary to achieve specific goals and local adaptation. Numerous breeding programs have been conducted in different parts of the world using various breeding methods that will be mentioned in this chapter. The advantages, specific problems and challenges, as well as the achievements associated with each method will also be discussed. Continued advances in technology at the genomic level will increase the understanding of grapevine genetics and genes which underlie its important traits. Therefore, integration of these new and classical technologies into grapevine breeding programs will further ensure outstanding breeding successes in the future.

2. Botany and Taxonomy of Grapevines

The grape family, *Vitaceae* consists of 17 genera and more than 1,000 species. *Vitis* species are widely distributed in the tropics and subtropics, and have been extended into the temperate zones of the world. Variation in chromosome numbers is observed among different species/genus of *Vitaceae*. Some genus like *Ampelocissus*, *Parthenocissus* and *Ampelopsis* have a chromosome number of \(2n = 40\). Species of the genus *Cissus* have a chromosome number of \(2n = 24\). However, most genera of *Vitaceae* have a chromosome number of \(2n = 38\). *Vitis* is the only food-producing genus in the family and is divided into 2 subgenera based on morphological criteria and chromosome number: *Muscadinia* Planch (muscadine grape), \(2n = 40\), and *Euvitis* Planch (bunch grape), \(2n = 38\). *Muscadinia* consists of three species including *V. munsoniana* and *V. rotundifolia* which are native to southeastern America and *V. popenoei*, native to Central America. The species of *Muscadinia* have also been considered within a separate genus, and their placement is still one of many ongoing debates. *Euvitis* species are interfertile and separated by geographic, phonologic and ecologic barriers, composing the American group (ca. 30 species), the Eurasia group (1 species) and the Asiatic group (more than 30 species). Most American species including *V. aestivalis*, *V. berlandieri*, *V. longii*, *V. cinerea*, *V. labrusca*, *V. monticola*, *V. riparia*, *V. rupestris*, *V. smalliana* and *V. shuttleworthii* have been used as parents in the breeding programs and/or rootstocks that exhibit resistance to several diseases and other pests, and tolerance to various soil and climatic conditions (Table 1). Native species in eastern Asia, China, Japan and south into Java constitute the Asiatic group. In China, 40 species, 1 subspecies and 13 varieties of Chinese wild grapes were found. Among these, *V. amurensis* is perhaps most commonly known. It has been frequently used to transfer cold hardiness and disease resistance (Table 1). In some areas of northeastern China and Japan, the edible fruits of this species are used as fresh fruit, juice, wine and jelly. Although, only one species (*V. vinifera*) was found in the Eurasia group, this species

<table>
<thead>
<tr>
<th>Species</th>
<th>Resistance to biotic stresses</th>
<th>Tolerance to abiotic stresses</th>
<th>Growth</th>
<th>Used for breeding</th>
<th>Other characteristics</th>
<th>Geographic location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downy mildew</td>
<td>Powdery mildew</td>
<td>Black rot</td>
<td>Anthracnose</td>
<td>Root-knot nematode</td>
<td>Phylloxera</td>
</tr>
<tr>
<td>V. rotundifolia</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. rupestris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. riparia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>V. monticola</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. vinifera</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. aestivalis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. lincecumii</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. × champinii</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. labrusca</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. amurensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. crenata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. cinerea</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. berlandieri</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. labrusca</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. acerifolia</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V. × champinii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. amurensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1. Characteristics and usage of some *Vitis* species.
The unique characteristics of *Muscadinia* are non-shedding bark, prominent lenticels, short small clusters, thick-skin berries that detach one by one as they mature, and simple tendrils with no fork. In addition, they have a unique fruity aroma. Their seeds are oblong without beaks. It was found that a bunch of *V. munsoniana* and *V. rotundifolia* consists of 6-24 berries, which do not ripen at the same time. By contrast, *Euvitis* has shedding bark, forked tendrils, mostly elongated flower clusters and berries adhering to the stem at maturity. Their seeds are pyriform, with long and short beaks.

Muscadinia requires approximately 100 days on the vine for the fruits to mature and a long growing season. They have higher resistance levels to most of the diseases than *Euvitis*. In addition, they have been cultivated commercially since the middle of the 18th century. Most grape products like wine, juice and jam have been made from *V. rotundifolia* because of its unique fruity aroma. The interspecific crosses between *Euvitis* and *Muscadinia* are difficult to achieve due to chromosome number and genomic differences. Most of F₁ hybrids are completely or highly sterile, but some hybrid combinations can survive. However, the species of *Euvitis* are easily intercrossed and produce vigorous and fertile F₁ progeny.

Flowering of grape requires two consecutive growing seasons. The latent primary buds will be induced during the summer. However, initiation and development of the flower will not take place until the following spring. In addition, flowering in grapes is controlled by the gibberellin: cytokinin balance. Moreover, the external factors such as high light intensity, short term exposure to high temperature and optimum levels of soil moisture and macronutrients, are also factors which promote their flowering. There are three types of flower depending on the characteristics of the species and cultivars (Figure 1).

Perfect or hermaphroditic flowers have both functional pistils and stamens. The female flower has functional pistils. However, it has stamens that produce pollen, but is generally sterile. The male flower has an undeveloped pistil, but contains only a small rudimentary ovary which cannot be fertilized. These flower characteristics can be used to differentiate the wild and cultivated forms of grapevine. Male and female flowers are found on separate vines in the wild forms that are dioecious (most of them have male flowers), while the cultivated forms usually have hermaphroditic flowers.

In Chinese wild grapes, it was found that most types are male or female. Hermaphroditic flowers are found in only a few species of *V. quinquangularis*, *V. amurensis* and *V. davidii*. In perfect flowers, the pistil is normally surrounded by five stamens, although the number may vary from five to more on individual flowers of the same inflorescence. The other distinct characteristic between wild and cultivated forms is their seeds. Seeds obtained from wild grapes are round in shape with short beaks, while those from cultivated forms have long beaks.

In dioecious grapes, fertilization is most likely to occur by means of wind or insect pollination, whereas, in the hermaphroditic flowers, fertilization happens via self-pollination. The ovary and seeds of fertilized grapevine flowers develop into a fleshy fruit called a berry, typically known as a grape. Berries of *Euvitis* develop in clusters of up to 100 or more, but in *Muscadinia* small clusters of three to five berries are usually...
formed. Each berry contains one to four seeds. Grape berries are non-climacteric fruits whose ripening is associated with an accumulation of soluble solids and berry pigmentation (anthocyanins). During ripening berry softness increases and hexoses accumulate while malic and tartaric acids decline.

![Figure 1. Three types of grapevine flowers.](image)

3. Grapevine Genetic Resources

There are several species of wild and cultivated grapevines in the world, and each species consists of numerous varieties. In different countries more than 10,000 named varieties of grapevine were found. Moreover, the list of new varieties is continually being added to every year. Grapevine germplasm collections are crucial for maintaining the genetic resources of *Vitis*. Genetic resources can be divided into 4 types; wild species, old traditional cultivars, new cultivars and breeding lines. The wild species are potential sources for various traits (Table 2).

Both *Euvitis* and *Muscadinia* species are good sources of resistance. Several American species are resistant to phylloxera (*Dactylosphaera vitifoliae*; mainly *V. riparia*, *V. rupestris* and *V. berlandieri*) and are used extensively in breeding programs. Among these three species, only *V. berlandieri* is adapted to highly calcareous soils, and it is used to develop root stocks resistant to phylloxera and lime-induced chlorosis.

Wild Chinese species including *V. bryoniifolia*, *V. davidii* and *V. piasezkii*, and Asiatic species *V. amurensis* are good sources of powdery mildew (*Uncinula necator*), and/or downy mildew (*Plasmopara viticola*) resistance. *Muscadinia* is a useful source of resistance to phylloxera, nematodes, Pierce’s disease (PD; *Xylella fastidiosa*) and fungal diseases including powdery mildew and downy mildew. Several sources of tolerance to abiotic stresses (cold, drought, salinity, lime etc.) are also observed in different *Vitis* spp. (Table 2), for example, cold tolerance is found in the northern species *V. riparia*, *V. labrusca* and *V. amurensis*.

©Encyclopedia of Life Support Systems (EOLSS)
While southern species, *V. lincecumii*, *V. bourquiniana* and *V. rotundifolia*, provide tolerance to hot conditions. However, these wild species have small berries with excessive seeds and strong pungent flavors. Therefore, extensive backcrosses are often needed to eliminate some unfavorable characteristics of the wild species. In addition to the wild *Vitis* spp., many traditional or new cultivars are also good sources of desirable traits (Table 2).

<table>
<thead>
<tr>
<th>Desired properties</th>
<th>Disease/ nematode/ insect/ stress</th>
<th>Vitis species/ varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease resistance</td>
<td>Powdery mildew (Uncinula necator)</td>
<td>V. aestivalis, V. amurenensis, V. cinerea, V. berlandieri, V. labrusca, V. riparia, V. rotundifolia, V. rupestris, V. davidii, V. piasezkii, V. quinquangularis, V. romanetii, ‘Nistru’</td>
</tr>
<tr>
<td>Fungal resistance</td>
<td>Downy mildew (Plasmopara viticola)</td>
<td>V. aestivalis, V. amurenensis, V. bryonisfolia, V. labrusca, V. lincecumii, V. flexuosa, V. piasezkii, V. pseudoreticulata, V. riparia, V. rupestris, V. rotundifolia, V. romanetii, V. yenshanensis</td>
</tr>
<tr>
<td>Bacterial resistance</td>
<td>Black rot (Guignardia bidwellii)</td>
<td>V. candidans, V. cinerea, V. riparia, V. rupestris, V. rotundifolia, ‘Chancellor’, ‘Léon Millot’, ‘Seyval’</td>
</tr>
<tr>
<td>Anthracnose (Elisinae ampelina)</td>
<td>Botrytis bunch rot (Botrytis cinerea)</td>
<td>V. amurenensis, V. munsoniana, V. labrusca, V. riparia, V. smalliana, V. simpsoni, V. shuttleworthii, V. davidii, V. piasezkii, V. pseudoreticulata, V. quinquangularis, V. romanetii, ‘Muscat Hamburg’, ‘Muscat Onitskanski’, ‘Suruchenskii’, ‘Bangalore Blue’, ‘Gros Colman’</td>
</tr>
<tr>
<td>Rust (Physopella ampelopsidis)</td>
<td></td>
<td>V. caribaea, V. rotundifolia, V. simpsoni, V. shuttleworthii</td>
</tr>
<tr>
<td>Rotbrenner (Pseudozeiczula tracheiphila)</td>
<td></td>
<td>V. cinerea, V. vinifera</td>
</tr>
<tr>
<td>Viral resistance</td>
<td>Pierce’s disease (Xylella fastidiosa)</td>
<td>V. aestivalis, V. candidans, V. rotundifolia, V. smalliana, V. simpsoni, V. shuttleworthii, V. x champinii, V. vulpina, ‘Norris’, ‘Lake Emerald’, ‘Blue Lake’</td>
</tr>
<tr>
<td>Nematode resistance</td>
<td>Root knot nematode (Meloidogyne spp.)</td>
<td>V. candidans, V. x champinii, V. rotundifolia</td>
</tr>
<tr>
<td>Dagger nematode (Xiphinema index)</td>
<td></td>
<td>V. cinerea, V. rotundifolia, V. rafotomentosa</td>
</tr>
<tr>
<td>Insect resistance</td>
<td>Phylloxera (Dactyllosphaera vitifoliae)</td>
<td>V. berlandieri, V. cinerea, V. x champinii, V. rotundifolia, V. riparia, V. rupestris</td>
</tr>
<tr>
<td>Aphid (Aphis illinoisensis)</td>
<td></td>
<td>V. cinerea</td>
</tr>
<tr>
<td>Abiotic stress tolerance</td>
<td>Cold</td>
<td>V. adstricta, V. amurenensis, V. acerifolia, V. labrusca, V. riparia, V. vinifera spp sylvestris var tipica, var balcanica, var aberrans, V. vulpina, V. yenshanensis, ‘Italian Riesling’</td>
</tr>
<tr>
<td>Hot</td>
<td></td>
<td>V. candidans, V. lincecumii, V. bourquiniana, V. rotundifolia</td>
</tr>
</tbody>
</table>
Drought
- *V. acerifolia*, *V. arizonica*, *V. × champinii*, *V. monticola*, *V. berlandieri*, *V. rupestris*, *V. vinifera*

Salinity
- *V. acerifolia*, *V. berlandieri*, *V. riparia*, *V. candicans*, *V. × champinii*

Iron
- *V. berlandieri*, *V. vinifera*

Lime
- *V. monticola*

Table 2. Sources of resistance/tolerance and other desirable traits.

Germlapse collections have stored at least 10,000 grapevine varieties. However, because synonyms (many names for the same varieties) and homonyms (convergence of name for different varieties) occur in grapevine, a more accurate estimate of the number of varieties might be closer to 5,000. The true number of varieties and the relationships between them remain to be determined possibly by extensive DNA profiling of the grape varieties in different collections and the development of a common database. Germlapses are being maintained in the field as well as in tissue culture or cryopreservation (maintained at -196°C). It was found that selection of the superior accessions and evaluation of the germlapses are probably one of the first steps for grapevine breeding.

During the past ten years, there has been increasing interest in grape germplasm resources and genetic diversity analysis. It helps to protect some varieties of grapes, especially wild grapes like *V. vinifera* ssp. *sylvestris*, which is an ancestor of cultivated varieties, and facilitates their utilization in grapevine breeding programs. *Sylvestris* grapes can climb forest trees at about 20-30 m of height and produce small bunches of fruits. In addition, they resist/tolerate both biotic and abiotic stress factors including drought, lime, pests and diseases. Nowadays, information on grape database and germlapse collections can be found on the website (Table 3).

<table>
<thead>
<tr>
<th>Databases</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Vitis</td>
<td>http://www.eu-vitis.de/</td>
</tr>
<tr>
<td>Greek Vitis</td>
<td>http://gvd.biology.uoc.gr/gvd/index.htm/</td>
</tr>
<tr>
<td>Italian Vitis</td>
<td>http://www.vitisdb.it/</td>
</tr>
<tr>
<td>Swiss Vitis</td>
<td>http://www1.unine.ch/svmd/</td>
</tr>
<tr>
<td>Vitis International Variety Catalogue</td>
<td>http://www.vivc.de/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Germlapse collections</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation des ressources phyto-génétiques</td>
<td>http://www.bdn.ch/culture/reben_startseite/</td>
</tr>
<tr>
<td>INRA Domaine de Vassal - Centre de ressources génétiques de la vigne</td>
<td>http://www1.montpellier.inra.fr/vassal/</td>
</tr>
<tr>
<td>The International Grape Genome Program (IGGP)</td>
<td>http://www1.unine.ch/svmd/</td>
</tr>
<tr>
<td>The NCBI taxonomy for V. vinifera</td>
<td>http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=29760&lvl=3&keep=1&srchmode=1&unlock</td>
</tr>
<tr>
<td>The Institute for Genomic Research (TIGR)</td>
<td>http://www.tigr.org/tigr-scripts/tds/index.cgi?species=grape</td>
</tr>
</tbody>
</table>
Table 3. Grape database and germplasm collections.

4. Inheritance and Genetic Analyses of Grapevines

In grapevines, inheritance and genetic analyses have been carried out only for a limited number of traits because it has a long life cycle, a large number of chromosomes, partial sterility of ovules, and low seed germination. The following are examples of the traits that have been studied. Downy mildew resistance in *Vitis* is based on two genetic systems: (1) a single gene for the hypersensitive reaction of stomatal tissues, for which resistant species are homozygous dominant, and the susceptible *V. vinifera* is homozygous recessive, (2) polygenes for inhibition of the mycelium growth in plant tissues. Broad sense heritability for downy mildew resistance was estimated at 0.83 to 0.94, suggesting minimum environmental effects, while narrow sense heritability was 0.26 to 0.39. For powdery mildew resistance, a polygenic system has been suggested. The narrow sense heritability estimate for this trait ranged from 0.31-0.51, suggesting quite a high contribution of additive genetic variance. *Botrytis* resistance is associated with the synthesis of phytoalexin stilbene. This resistance had a narrow sense heritability and broad sense heritability of 0.23 to 0.26 and 0.82 to 0.92, respectively. It was found that resistance to anthracnose (*Elsinoe ampelina*) is controlled by two dominant genes for susceptibility (*An*₁ and *An*₂) and a single dominant resistance gene (*An*₃). The narrow sense heritability for anthracnose resistance was measured as 0.79, indicating that anthracnose resistance gene(s) were highly heritable. The resistance to black rot (*Guignardia bidwellii*) was reported to be either controlled by 2 dominant genes or quantitatively controlled. Previous research suggested that Pierce’s disease resistance required 3 dominant genes, *Pd*₁, *Pd*₂ and *Pd*₃. Resistance to grapevine fanleaf virus can be obtained by using host plants resistant to the virus or plants resistant to the dagger nematode vector, *Xiphinema index*. The resistance to nematode was controlled by either a single dominant gene or by two genes, one dominant and one recessive, while the resistance to the virus was a recessive trait controlled by at least 2 genes. Resistance to phylloxera, an insect pest, is controlled by multiple genes. Those from *V. rotundifolia* appear to be dominant. *V. × champinii* and *V. candicans* confer resistance to the root knot nematode (*Meloidogyne* spp.), for which the resistance is mediated by a dominant gene. The heritability of resistance to this pest was estimated at 0.39, suggesting that additive effects were important.

Two types of seedlessness are found in grapevine: (1) stenospermocarpic, the seeds abort while still small and soft, (2) parthenocarpic, the seeds do not develop at all. The former is the one utilized in table grape improvement. Seedlessness is related to three independent recessive genes regulated by a dominant inhibitor locus, *SdI* (Seed Development Inhibitor). Two pairs of genes affect fruit color with epistatic action: *B*, a
dominant gene for black fruit, and R, a dominant gene for red fruit. The white-fruited grapes are recessive for both genes. Similarly, the composition of fruit anthocyanins is controlled by 2 genes: G for diglucosides or g for monoglucosides, and O for triphenols or o for diphenols. For fruit aroma, muscat flavor is controlled by 5 dominant complementary genes, methyl anthranilate is controlled by 3 dominant complementary genes, while volatile ester levels are determined by 2 genes. Several quality traits have generally high heritabilities: cluster compactness (0.55), berry weight (0.49), skin texture (0.75) and pulp texture (1.0).

Bibliography

Allen, A. (2004) Vineyard and vintage view. Mid-America Viticulture and Enology Center 19(2), 1-17. [This article outlines grape maturity and sampling for growers.]

Anonymous. (2003) Field trial of GM grapevines - evaluation of berry color, sugar composition, flower and fruit development and pollen flow study. CSIRO Plant Industry, South Australia, pp. 1-97. [This article evaluates the expression of genes related to fruit quality in transgenic grapevines.]

Brînduse, E., M. Ionescu, and M. Tomescu. (2005) Vinifera genotype breeding for resistance to downy mildew by inter-specific hybridization using irradiated pollen. Romanian Agricultural Research, 33-40. [This article deals with conventional grapevine breeding to achieve downy mildew resistance.]

Conner, P.J. (2009) A century of Muscadine grapes (Vitis rotundifolia Michx.) breeding at the university of Georgia. Acta Horticulturae 827, 481-484. [This article summarizes the progress on breeding of Muscadine grapes.]

Covert, C. (2008) Cold climate grape varieties from eastern U.S. breeding programs. FPS Grape Program Newsletter, pp. 10-12. [This article describes grape breeding programs for cold tolerance.]

Cristinizio, G., C. Iannini, G. Scaglione, and M. Boselli. (2001) Effect of rootstocks on Botrytis cinerea susceptibility of Vitis vinifera cv. Falanghina. Advances in Horticultural Science 14, 83-86. [This article is about the effect of rootstocks on Botrytis cinerea.]

Davies, C., T. Wolf, and S.P. Robinson. (1999) Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Science 147, 93-100. [This is one of the articles on altered fruit sucrose content in grapevine tissues.]

Fennell, J.L. (1948) Inheritance studies with the tropical grape. Journal of Heredity 39, 54-64. [This manuscript is about inheritance analysis of some agronomical traits in tropical grapes.]

Hajdu, E. (2007) Breeding of table grape varieties in Hungary and beyond our national borders. Hungarian Agricultural Research, 4-9. [This manuscript covers table grape improvement using several approaches in Hungary.]

Hemstad, P.R., and J.J. Luby. (1997) Utilization of Vitis riparia for the development of new wine cultivars with resistance to disease and extreme cold. Annual Report of the Minnesota Grape Growers Association, 7-10. [This manuscript shows the development of new wine cultivars to extreme cold using V. riparia.]

©Encyclopedia of Life Support Systems (EOLSS)
Hoffmann, S., P. Cindric, and P. Kozmajr. (2007) Breeding resistance cultivars to downy and powdery mildew. In 30th World Congress of Vine and Wine. 10-16 June, 2007. Kongressszusa, Budapest. [This article outlines improvement of grapevine for increased resistance to downy and powdery mildew.]

Huang, Y., D.F. Karnosky, and C.G. Tauer. (1993) Applications of biotechnology and molecular genetics to tree improvement. Journal of Arboriculture 19(2), 84-98. [This article reviews the application of tissue culture, genetic engineering and molecular markers in tree improvement.]

Jindal, P.C., and B. Shankar. (2002) Screening of grape germplasm against anthracnose (Sphaceloma ampelinum de Bary.). Indian Journal of Agricultural Research 36(2), 145-148. [The work in this manuscript discusses the screening of grape germplasm for accessions resistant to anthracnose.]

Korkutal, I. (2005) Embryo abortion in some new seedless table grape (Vitis vinifera L.) varieties. International Journal of Botany 1(1), 1-4. [This article describes the development and abortion of embryo in some new seedless table grapes.]

Li, D., Y. Wan, Y. Wang, and P. He. (2008) Relatedness of resistance to anthracnose and to white rot in Chinese wild grapes. Vitis 47(4), 213-215. [This manuscript explores Chinese wild grapes for resistance to anthracnose and white rot.]

Liang, L., C. Yang, J. Yang, B. Wu, L. Wang, J. Cheng, and S. Li. (2009) Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica 167, 113-125. [Inheritance of anthocyanins in grape berries is described in this article.]

Meredith, C.P. (2001) Grapevine genetics: Probing the past and facing the future. Agriculturae Conspectus Scientificus 66(1), 21-25. [This review describes the applications of DNA markers in the grapevine.]

©Encyclopedia of Life Support Systems (EOLSS)
Mezzett, B., T. Pandolfini, O. Navacchi, and L. Landi. (2002) Genetic transformation of *Vitis vinifera* via organogenesis. BMC Biotechnology 2(18), 1-10. [Role of *DefH9-iaaM* gene in young flower buds is described in this article.]

Ocete, R., M.Á. López, A. Gallardo, and C. Arnold. (2008) Comparative analysis of wild and cultivated grapevine (*Vitis vinifera*) in the Basque Region of Spain and France. Agriculture, Ecosystems & Environment 123, 95-98. [This manuscript shows the pest infestation levels of wild and cultivated grapevine.]

Pavloušek, P. (2007) Evaluation of resistance to powdery mildew in grapevine genetic resources. Journal of Central European Agriculture 8(1), 105-114. [This article is about screening grapevine genetic resources for powdery mildew resistance.]

Pernesz, G. (2004) New resistant table grape cultivars bred in Hungary. Acta Horticulturae 652, 321-327. [This manuscript aims to develop new table grape cultivars resistant to downy mildew, powdery mildew and grey rot, with high cold hardiness.]

Roytchev, R. (1998) Inheritance of grape seedlessness in seeded and seedless hybrid combinations of grape cultivars with complex genealogy. American Journal of Enology and Viticulture 49 (3), 302-305. [This article describes the inheritance of grape seedlessness.]

Sestras, R., S.D. Moldovan, and C.F. Popescu. (2008) Variability and heritability of several important traits for grape production and breeding. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36(1), 88-97. [This manuscript reports measurement of variability and heritability of many traits including downy mildew resistance.]

Sim, S.T. (2006) Virus elimination from grape selections using tissue culture. FPS Grape Program Newsletter, pp. 30-31. [This article shows the utilization of tissue culture to obtain virus-free plants.]

Snyder, E., and F.N. Harmon. (1936) Hastening the production of fruit in grape hybridizing work. Journal of the American Society for Horticultural Science 34, 426-427. [This article shows how to shorten the juvenile period of grapevine.]
Srinivasan, C., and M.G. Mullins. (1981) Physiology of flowering in the grapevine – a review. American Journal of Enology and Viticulture 32(1), 47-63. [Flowering process of the grapevine is reviewed in this article.]

Stafne, E. (2011) Interspecific hybrid grapes. In Published on-line: May 2011, developed under the auspices of the eXtension, United States, [http://www.extension.org] [This article presents information on interspecific hybrid grapevines.]

Stout, A.B. (1939) Progress in breeding for seedless grapes. Proceedings of the American Society for Horticultural Science 37, 627-629. [Progress in breeding for seedless grapes is discussed in this article.]

Süle, S., and T.J. Burr. (1998) The effect of resistance of rootstocks to crown gall (Agrobacterium spp.) on the susceptibility of scions in grapevine cultivars. Plant Pathology 47, 84-88. [This manuscript discusses the use of resistant rootstocks to protect susceptible scions from crown gall.]

This, P., T. Lacombe, and M.R. Thomas. (2006) Historical origins and genetic diversity of wine grapes. Trends in Genetics 22(9), 511-519. [This is an article dealing with the grape germplasm resources.]

Töpfer, R. (2010) Grape germplasm resources. In Grape Genetic Resources, developed under the auspices of the International Grape Genome Program, [http://www.vitaceae.org] [This website shows grape germplasm resources.]

Uzun, I.H., and A. Bayir. (2010) Distribution of wild and cultivated grapes in Turkey. Notulae Scientia Biologicae 2(4), 83-87. [This manuscript aims to describe the distribution of wild and cultivated grapes in Turkey.]

©Encyclopedia of Life Support Systems (EOLSS)

Wakana, A., M. Hiramatsu, S.M. Park, N. Hanada, I. Fukudome, and K. Yasukochi. (2003) Seed abortion in crosses between diploid and tetraploid grapes (Vitis vinifera and V. complex) and recovery of triploid plants through embryo culture. Journal of the Faculty of Agriculture Kyushu University 48(1-2), 39-50. [This article shows the use of embryo culture to obtain seedless triploid grapes.]

Wan, Y., P. He, and Y. Wang. (2007a) Inheritance of downy mildew resistance in two interspecific crosses between Chinese wild grapes and European grapes. Vitis 46(3), 156-157. [This article is about interspecific crosses between Chinese wild grapes and European grapes to transfer downy mildew resistance.]

Biographical Sketches

Piyada Tantasawat was born in Bangkok, Thailand, and obtained her B.Sc. in Agriculture (Horticulture) at Kasetsart University with First Class Honors. She worked as a research assistant at Kasetsart University for nearly a year before receiving a Fulbright Scholarship to pursue her M.Sc. at Cornell University where she obtained her Ph.D. in Plant Breeding in 1997. After three years of postdoctoral research in plant genetic engineering and biochemistry at Cornell University, she returned to Thailand and was appointed to the staff of the School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), Thailand. Her major scientific interests are breeding for plant pest resistance utilizing conventional, mutation, and biotechnological approaches, plant tissue culture, and plant resistance mechanisms. She has worked on grapevine, mungbean, sunflower, cucumber, tomato and orchid improvement, and published over 40 papers that are related to these interests.

Oythip Poolsawat was born in Nakhon Nayok, Thailand. She has a B.Sc. (Second Class Honors) and a Ph.D. in Crop Production Technology from SUT. She is currently a post-doctoral fellow at SUT. She is interested in the resistance mechanisms and breeding of grapevines for resistance to diseases, especially anthracnose.

Wirot Chaowiset was born in Suphanburi, Thailand, and has a B.Sc. and an M.Sc. in Crop Production Technology from SUT, Thailand. His thesis study was on physiology of *Pueraria mirifica* and the effect of the active ingredients in *P. mirifica* on the relaxation of blood vessels in rats. After graduation (2007), he worked as a research assistant in the sunflower breeding project. Currently, he is a post-graduate researcher at SUT. He has performed research on many crops, including tomatoes, cucumbers, grapevines and orchids etc. He is interested in plant physiology, mechanisms of resistance, and crop improvement via tissue culture and other techniques.