GENETIC ENGINEERING OF FUNGAL CELLS

Margo M. Moore
Department of Biological Sciences, Simon Fraser University, Burnaby, Canada

Keywords: filamentous fungi, transformation, protoplasting, Agrobacterium, promoter, selectable marker, REMI, transposon, non-homologous end joining, homologous recombination

Contents

1. Introduction
 1.1. Industrial importance of fungi
 1.2. Purpose and range of topics covered
2. Generation of transforming constructs
 2.1. Autonomously-replicating plasmids
 2.2. Promoters
 2.2.1. Constitutive promoters
 2.2.2. Inducible promoters
 2.3. Selectable markers
 2.3.1. Dominant selectable markers
 2.3.2. Auxotrophic/inducible markers
 2.4. Gateway technology
 2.5. Fusion PCR and Ligation PCR
3. Transformation methods
 3.1. Protoplast formation and CaCl2/PEG
 3.2. Electroporation
 3.3. Agrobacterium-mediated Ti plasmid
 3.4. Biolistics
 3.5. Homo- versus heterokaryotic selection
4. Gene disruption and gene replacement
 4.1. Targeted gene disruption
 4.1.1. Ectopic and homologous recombination
 4.1.2. Strains deficient in non-homologous end joining (NHEJ)
 4.1.3. AMT and homologous recombination
 4.1.4. RNA interference
 4.2. Random gene disruption
 4.2.1. Restriction enzyme-mediated integration (REMI)
 4.2.2. T-DNA tagging using Agrobacterium-mediated transformation (AMT)
 4.2.3. Transposon mutagenesis & TAGKO
5. Concluding statement
Glossary
Bibliography
Biographical Sketch

Summary

Filamentous fungi have myriad industrial applications that benefit mankind while at the
same time, fungal diseases of plants cause significant economic losses. The development of effective methods for genetic engineering of these organisms over the past two decades has improved our understanding of the basic biological processes of filamentous fungi. This review provides a summary of the methodology involved in creating transforming DNA constructs, introduction of DNA into filamentous fungi as well as methods for targeted and random gene disruption.

1. Introduction

1.1. Industrial importance of fungi

Fungi have been used for traditional production of wine, beer and cheese for thousands of years. In the past century, their utility to humans has expanded with the synthesis of organic chemicals such as solvents and acids, as well as valuable secondary metabolites such as antibiotics and other pharmaceuticals. A list of products is presented by Lubertozzi and Keasling in their 2009 review. In addition, fungi are a significant source of valuable industrial enzymes; in 2004, Schauer and Borris catalogued more than 80 native enzymes such as proteases, amylases and oxidoreductases. More recently, yeast and some filamentous fungi have proven to be successful alternatives to bacteria for the production of heterologous proteins. An advantage of using fungi for protein production is the GRAS (Generally Regarded as Safe) status of many industrial yeasts and filamentous fungi. Furthermore, recent genetic engineering efforts have altered glycosylation pathways in yeasts to yield glycoproteins with N-glycan structures that more closely mimic those found in mammalian proteins. Recent advances in genetic engineering of fungi are expected to facilitate the introduction of more efficient as well as novel uses of fungi in industrial processes. In addition, because they are eukaryotic cells with a relatively short generation time and small haploid genomes, effective genetic systems have been developed for many fungal species. This has resulted in their use as excellent model systems for basic metabolic processes.

1.2. Purpose and range of topics covered

The purpose of this review is to introduce readers to the basic methods used to genetically engineer fungi from the construction of transforming DNA to methods for high-throughput gene disruption. This article will present methods used for filamentous fungi and non-\textit{Saccharomyces} yeasts. There is an extensive literature on genetic and metabolic engineering of \textit{Saccharomyces cerevisiae} and although many of the methods discussed are applicable to filamentous fungi and other yeast species, there are unique challenges associated with filamentous fungi. These will be the focus of this article.

2. Generation of transforming constructs

2.1. Autonomously-replicating plasmids

In many yeast species including \textit{Saccharomyces}, \textit{Schizosaccharomyces} and \textit{Candida}, shuttle plasmids are available that contain autonomously-replicating sequences (ARS) that permit plasmid replication in yeast. ARS-like sequences on linear plasmids have been identified in many species of filamentous fungi and Katayose and coworkers
demonstrated in 1990 that a 366 bp fragment of a linear mitochondrial plasmid from the basidiomycete, *Lentinus edodes* contained three *S. cerevisiae* ARS consensus sequences. Insertion of this fragment into the yeast integrative plasmid YIp32, permitted its autonomous replication in *S. cerevisiae*. Nevertheless, ARS-containing shuttle vectors have had very limited use in filamentous fungi. Plasmids containing the AMA1 sequence from *A. nidulans* (which contains ARS consensus sequences) were studied in *Penicillium chrysogenum* and the authors found that the stability of the AMA1 plasmids was relatively low (35-75%) and that plasmid integration occurred. Fierro and coworkers showed in 2004 that plasmid vectors containing the *A. nidulans* AMA1 sequence efficiently transformed *Penicillium nalgiovense* and were maintained extrachromosomally. However, mitotic stability (~75%) was not tested after one generation on non-selective media, and in some transformants, recombination occurred between plasmid and chromosomal sequences. In 1998, Aleksenko and Ivanova created autonomous linear plasmids containing human telomeric elements but these were not stable. Because no useful centromeric sequences have been cloned that have yielded stably replicating vectors, transformation is generally carried out using constructs that usually integrate into the fungal genome. Some important features of these constructs are described below.

2.2. Promoters

2.2.1. Constitutive promoters

Strong promoters are essential for the production of industrial enzymes. Several constitutive promoters have been used for this purpose; selected promoters are listed in Table 1. The *Pna2/TPI* hybrid promoter containing triose phosphate isomerase from *A. nidulans* linked 5' to the *A. niger* neutral amylase II promoter has been used for foreign protein expression. The *Aspergillus nidulans* glyceraldehyde-3-phosphate dehydrogenase (*gpdA*) promoter has been extensively used to drive protein expression in fungi. Because the use of homologous promoters can enhance expression levels, the endogenous *gpdA* promoter has been cloned from many different species of fungi. In 2002, Wasylnka and Moore successfully transformed *Aspergillus fumigatus* with a plasmid vector encoding the *sgfp* gene controlled by the *A. nidulans gpdA* promoter; strong constitutive expression of GFP was observed in conidia and hyphae. Interestingly, Redkar et al. reported in 1998 that *gpdA* may be activated by osmotic signals suggesting that the expression level may be modulated by salt concentrations. Similarly, the *trpC* gene promoter from *A. nidulans* (for tryptophan biosynthesis) has been used for strong homologous and heterologous gene expression. The *ToxA* promoter has been used in fungi for green fluorescent protein expression. The *ToxA* or *ToxB* promoters were derived by Cufetti and colleagues in 1997 from protein toxin genes in the plant pathogenic fungus, *Pyrenophora tritici-repentis* and subsequent work in 2005 by Andrie has shown that this promoter is effective in driving *sgfp* expression in a variety of fungi.

2.2.2. Inducible promoters

Inducible promoters provide some control over the expression of introduced genes, particularly for the study of essential genes or for the production of toxic proteins.
Furthermore, in gene knock-out studies, using an inducible promoter may eliminate the requirement for complementation of the mutant strain with the wild type gene. A problem may arise if gene expression in the parent strain is lower than observed in transformed strain in the presence of the repressor; in this case, verification of the phenotype using a null mutant strain is recommended. Many inducible promoters have been used in filamentous fungi and these are listed in Table 1. Ideal promoters are tightly regulated, induce gene expression at low cost and result in high levels of expression after induction.

<table>
<thead>
<tr>
<th>Constitutive promoters</th>
<th>Gene function</th>
<th>Source DNA</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pna2/tpi hybrid promoter</td>
<td>neutral amylase + triose phosphate isomerase</td>
<td>Aspergillus nidulans</td>
<td>Olempska-Beer et al. 2006</td>
</tr>
<tr>
<td>gpdA</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Aspergillus nidulans</td>
<td>Punt et al. 1991</td>
</tr>
<tr>
<td>trpC</td>
<td>tryptophan biosynthesis</td>
<td>Aspergillus nidulans</td>
<td>Hamer and Timberlake, 1987</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inducible promoters</th>
<th>Gene function</th>
<th>Source DNA</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAKA-A amylase</td>
<td>amylase hydrolysis</td>
<td>Aspergillus oryzae</td>
<td>Tada et al. 1991 Christensen 1988</td>
</tr>
<tr>
<td>glaA</td>
<td>glucoamylase</td>
<td>Aspergillus niger var. awamori</td>
<td>Boel et al. 1984</td>
</tr>
<tr>
<td>alcA/AlcR</td>
<td>alcohol dehydrogenase</td>
<td>Aspergillus nidulans</td>
<td>Gwynne et al. 1989</td>
</tr>
<tr>
<td>niiA</td>
<td>nitrite reductase</td>
<td>Aspergillus fumigatus</td>
<td>Amaar and Moore, 1998 Hu et al. 2007</td>
</tr>
<tr>
<td>cbhI</td>
<td>cellobiohydrolase I</td>
<td>Trichoderma reesei</td>
<td>Harkki et al. 1991</td>
</tr>
<tr>
<td>ctr4</td>
<td>high affinity copper transporter</td>
<td>Schizosaccharomyces pombe</td>
<td>Bellemare et al. 2001</td>
</tr>
<tr>
<td>thiA</td>
<td>thiamine biosynthesis</td>
<td>Aspergillus oryzae</td>
<td>Shoji et al. 2005</td>
</tr>
</tbody>
</table>

Table 1: Selected promoters used to drive gene expression in fungi

The TAKA amylase promoter from *Aspergillus oryzae*, developed by Tada et al. in 1991 has been used to drive heterologous protein expression in *A. oryzae*. The promoter is activated by growth on starch as a carbon source and recent work by Ito and coworkers in 2004 characterized AmyR, a transcriptional regulator that activates the genes involved in amylolytic action, including TAKA amylase. Promoters from other *A. oryzae* amylolytic genes such as alpha amylase B (*amyB*) have also been used by Hoshida to drive protein expression in *A. oryzae* during induction by maltose. In 2008, the *A. niger* *glaA* (glucoamylase A) promoter was analyzed by Ganzlin and Rinas to
determine the complex effect of glucose on promoter function. During these studies, they identified 5-thio-glucose and 2-deoxyglucose as novel and potent inducers of \textit{glaA}.

The alcohol regulon in \textit{Aspergillus nidulans} consists of \textit{alcA} (alcohol dehydrogenase), \textit{aldA} (aldehyde dehydrogenase) and a positive regulator, \textit{alcR}. Glucose repression of all three genes is mediated by the \textit{creA} gene product. In 1995, Fillinger and colleagues showed that ethanol and other substrates stimulate \textit{alcR} whereas poor carbon sources such as lactose or glycerol can derepress the \textit{alcA} gene. The tight regulation of the \textit{alcA} promoter allows a simple phenotypic analysis in defined media promoting induction or complete repression of a gene product. This ability to completely switch off gene expression has permitted the validation of essential genes through analysis of their terminal phenotypes. Ha et al. successfully used in 2006 the \textit{A. nidulans alcA} promoter in \textit{Fusarium solani} to drive the expression of an RNAi construct. Use of the \textit{alcA/alcR} system was originally devised by Gwynne and colleagues in 1989 for the production of heterologous proteins by \textit{Aspergillus nidulans} (e.g., alpha interferon-2). In 1996, Gouka used the \textit{exlA} promoter from \textit{Aspergillus awamori} endoxylanase (xylose-inducible) to provide strong expression in \textit{A. awamori}.

One disadvantage of driving gene expression based on changes in central metabolism is undesirable effects on fungal growth and development. To bypass the potential problems associated with nutritional markers, in 2005 Shoji et al. developed the \textit{thiA} promoter which is transcriptionally repressed by sub-micromolar concentrations of thiamine. However, thiamine repression does not occur when the pH rises above neutral; therefore, culture conditions may affect the effectiveness of this promoter. In \textit{Aspergillus nidulans} and \textit{A. niger}, a hybrid promoter containing the human estrogen response element (ERE) fused to a minimal \textit{S. cerevisiae URA3} TATA element was developed in 2005 by Pachlinger and colleagues to drive expression of a \textit{lacZ} reporter gene. When estrogenic compounds were added as inducers to the medium at picomolar levels, they achieved levels of expression similar to an \textit{alcA} construct. The advantage of this system is that it does not interfere with central metabolism in the host strain. In addition, no special media is required so economical complex media can be used for fungal growth.

2.3. Selectable markers

In the past two decades, a large number of selectable markers have been developed for fungi and most have been effective across a wide range of species. Table 2 lists some of the more commonly-used markers and these are described in more detail below. Markers either complement a nutritional deficiency in an auxotrophic strain, or are dominant selectable markers. Dominant selectable markers are frequently employed because they preclude the need to generate an auxotrophic host strain and so permit the transformation of many strains of one species. Hence, they are particularly useful for uncharacterized strains for which little genetic information is available. These markers are generally cloned into plasmids that can replicate in \textit{E. coli} under the control of appropriate promoters (generally strong constitutive promoters, see section 2.2.1). The Fungal Genetics Stock Centre maintains a repository of useful vectors with either dominant or nutritional markers developed for selection in filamentous fungi (http://www.fgsc.net/plasmid/vector.html).
<table>
<thead>
<tr>
<th>Function of resistance/nutritional gene</th>
<th>Source organism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>benomyl - tub</td>
<td>benomyl-resistant tubulin mutants</td>
<td>Neurospora crassa</td>
</tr>
<tr>
<td>bialophos/phosphinothricin-bar</td>
<td>phosphinothricin acetyltransferase</td>
<td>Streptomyces hygroscopicus</td>
</tr>
<tr>
<td>carboxin - cbx<sup>R</sup></td>
<td>carboxin-resistant succinate dehydrogenase mutants</td>
<td>Ustilago maydis</td>
</tr>
<tr>
<td>hygromycin - hph</td>
<td>hygromycin phosphotransferase</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>nourseothricin - nat</td>
<td>nourseothricin acetyltransferase</td>
<td>Streptomyces noursei</td>
</tr>
<tr>
<td>phleomycin/zeocin/bleomycin ble</td>
<td>bleomycin binding protein</td>
<td>Streptothalloteichus hindustanus</td>
</tr>
<tr>
<td>pyrithiamine - ptrA</td>
<td>mutated allele of thiamine biosynthesis gene</td>
<td>Aspergillus oryzae</td>
</tr>
<tr>
<td>amdS</td>
<td>acetamidase</td>
<td>Aspergillus nidulans</td>
</tr>
<tr>
<td>Auxotrophic markers *both are positive-negative selection systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niaD</td>
<td>nitrate reductase (assimilatory)</td>
<td>Aspergillus nidulans</td>
</tr>
<tr>
<td>pyrG</td>
<td>orotidine-5(^{\prime})-phosphate decarboxylase</td>
<td>Aspergillus niger</td>
</tr>
</tbody>
</table>

Table 2: Selectable markers used in filamentous fungi

2.3.1. Dominant selectable markers

The parent strain should be tested to establish the minimum inhibitory concentration of these agents as naturally-occurring resistance is common in filamentous fungi. In addition, some antibiotics are less effective at particular salt concentrations and pH ranges. Hence, it is strongly recommended that the resistance of putative transformants picked from selection plates be confirmed using liquid cultures.
The hygromycin phosphotransferase gene from *E. coli* (*hph*) inactivates the antibiotic, hygromycin B, and has been effective in most systems. Hygromycin B inhibits protein synthesis in both prokaryotes and eukaryotes and in fungi, it is effective at concentrations ranging from 50-250 μg/ml. Several vectors are available; in 1987, Punt and coworkers developed pAN7 that contained the original antibiotic resistance cassette under the control of the *gpdA* promoter with the *A. nidulans trpC* terminator sequence. Other vectors have since been constructed, e.g., pCB1003 in which expression is controlled by the *trpC* promoter. Spontaneous hygromycin resistance can complicate the use of this antibiotic for selection in some fungal species.

Phleomycin and zeocin are members of the bleomycin family of antitumour antibiotics that bind to DNA and in the presence of divalent metal ions, initiate a radical-mediated breakdown of DNA. The antibiotic resistance gene (*ble*) has been cloned from *Streptalloteichus hindustanus (Sh)* as well as part of the Tn5 determinant in *E. coli*; the Ble protein binds the antibiotic and prevents its interaction with DNA. In 1988, Mattern and colleagues constructed the pAN8-1 vector that contains the *Sh ble* gene under the control of the *gpdA* promoter from *A. nidulans*. Other cassettes have been developed from pUT703; Silar has used pBC-phleo that has the *A. nidulans gpdA* promoter and the *S. cerevisiae CYC1* terminator. In 2007, he and colleagues reported that phleomycin at pH 6.5 was not as effective at inhibiting growth of wild type *A. flavus* compared to pH 7.5.

Phosphinothricin is the active breakdown product of the herbicide, bialophos, which inhibits glutamine synthase in susceptible organisms. Resistance can be conferred by the *bar* gene from *Streptomyces hygroscopicus*. Phosphinothrinocin resistance has been employed in both plants and a wide variety of filamentous fungi as a dominant selectable marker though some species show spontaneous resistance. Ahuia and Punekar have postulated that resistance is via reduced L-phosphinothricin uptake.

Nourseothricin is an aminoglycoside antibiotic that inhibits protein synthesis by a mechanism distinct from that of hygromycin; hence, no cross-resistance between these markers should occur. Resistance is conferred by the *nat* gene product of *Streptomyces noursei* encoding nourseothricin acetyltransferase. Kuck and Hoff developed in 2006 an efficient marker using the *nat-1* gene with the *A. nidulans trpC* promoter and terminator. In 2007, Smith and Smith developed several other vectors that employ different promoters and terminator sequences and these were successfully used to transform *Neurospora crassa* and *Cryphonectria parasitica*.

Benomyl is a fungicide used to control phytopathogenic fungi. Development of resistance to benomyl has been observed with the use of this agent; mutation F167Y in the *N. crassa* beta-tubulin gene was shown to be responsible. This gene was then used by Orbach and coworkers as a dominant selectable marker. *Paecilomyces* spp. have been investigated as biocontrol agents of agricultural pest insects; in 1994, Inglis and colleagues successfully transformed *P. fumosoroseus* and *P. lilacinus* were successfully transformed using the *N. crassa* gene. The advantage of using benomyl resistance for these fungi was the ability to use them along with the application of benomyl-related fungicides resulting in simultaneous control of phytopathogens and insects.
Carboxin is a systemic fungicide and many basidiomycetous fungi have been shown to be resistant to its effects via a mutation in succinate dehydrogenase. In 2000, Kojic and Holloman developed a dominant selection system for the plant pathogenic fungus, *Ustilago maydis*, using the *U. maydis* cbx gene. Although it was reported that the expression of *cbx* in *U. maydis* reduced its pathogenicity to corn, a study by Topp and coworkers in 2002 using several strains transformed with *cbx* found that their pathogenicity on corn was no different from non-transformed controls. In 2009, Shima and coworkers developed a selection system for *Aspergillus parasiticus* based on homologous integration of the *shB* gene from *Aspergillus oryzae*. Acetate medium was employed in this study because ascomycetes are more susceptible to carboxin in this medium.

Blasticidin S is an aminoacylnucleoside antibiotic that inhibits protein synthesis in both prokaryotes and eukaryotes and resistance genes encoding blasticidin S deaminase have been cloned from bacteria (*bsr, Bacillus cereus*) and fungi (*bsd, Aspergillus terreus*). Yanai and his research team produced in 1991 the first report of successful use of blasticidin S resistance as a positive selection system in filamentous fungi (*Rhizopus niveus*), using the *B. cereus* deaminase gene under the control of the *glaA* promoter from *Rhizopus oryzae*. Although this system has been employed in plants and mammalian cells, blasticidin S resistance has not been routinely used for positive selection in filamentous fungi.

Acetamidase (amdS)

Acetamide is a poor nitrogen source for most wild-type fungal strains. Using the homologous gene cloned from *A. nidulans* by Hynes et al. in 1983, *amdS* was then developed as a selectable marker for *A. nidulans* by Tilburn and colleagues; transformants are able to use acetamide as a nitrogen source. Geissen and Leistner used the *A. nidulans amdS* gene as a marker in *Penicillium nalgiovense*. Fungi transformed with *amdS* are sensitive to fluoroacetamide and this was exploited in 2005 by Michielse et al. to inhibit the growth of ectopic transformants that retained the *amdS* gene (the gene would be excised during homologous recombination).

Bibliography

Aleksenko A and Ivanova L (1998) In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in *Aspergillus nidulans*. Mol Gen Genet 260,159–164. [The authors attempted to create an artificial chromosome in *A. nidulans* and demonstrate that although the telomeric sequences did not affect transformation frequencies, the phenotypic stability of the transformants was low.]

Ahuja M and Punekar NS (2008) Phosphinothricin resistance in *Aspergillus niger* and its utility as a selectable transformation marker. Fungal Genet Biol 45, 1103-1110. [The antifungal effects of the glutamine synthetase inhibitor bialaphos/phosphinothricin, and the competition by L-glutamate are described. The paper includes a list of fungi sensitive to phosphinothricin and for which the bar gene has been used as a selectable marker.]

Andrie RM, Martinez JP, Ciuuffetti LM (2005) Development of ToxA and ToxB promoter-driven fluorescent protein expression vectors for use in filamentous ascomycetes. Mycologia, 97, 1152–1161. [This work expands the number of promoters used to drive fluorescent protein expression by showing that the ToxA promoter, the ToxB promoter from *Pyrenophora tritici-repentis* necrosis-inducing host-selective toxin gene can drive expression of several fluorescent proteins in *Verticillium dahliae*.]

Avalos J, Geever RE, and Case ME (1989) Bialaphos resistance as a dominant selectable marker in *Neurospora crassa*. Curr. Genet. 16,369-327. [This work demonstrates the effect of minimal medium composition on frequency of resistance to phosphinothricin in *N. crassa*, and on the mitotic stability of the integrated bar gene from *Streptomyces hygroscopicus*.]

Ballance DJ, Buxton FP, and Turner G (1983) Transformation of *Aspergillus nidulans* by the orotidine-5'-phosphate decarboxylase gene of *Neurospora crassa*. Biochem Biophys Res Commun 112, 284-289.[This is the first report of the use of the pyrG marker in filamentous fungi. The authors reported that the *pyrG* gene had been integrated into the *A. nidulans* genome along with vector sequences.]

Bellemare DR, Sanschagrin M, Beaudoin J, Labbe S (2001) A novel copper-regulated promoter system for expression of heterologous proteins in *Schizosaccharomyces pombe*. Gene 273, 191–198. [The authors developed the regulatable promoter based on copper availability by using the copper transporter promoter. 12 expression vectors were produced to allow tight regulation of expression of heterologous proteins in *S. pombe*.]

Bölker M, Böhmer HU, Braun KH, Görl J and Kahmann R (1995) Tagging pathogenicity genes in *Ustilago maydis* by restriction enzyme mediated integration (REMI). Mol Gen Genet 248, 547–552. [To increase single-copy integration of transforming DNA in *U. maydis*, the authors describe a REMI method using BamHI and show that ~50% of insertions occurred at BamHI sites in the genome. They also screened mutants for virulence on plants.]

Brown JS, Aufauvre-Brown A, Holden DW (1998) Insertional mutagenesis of *Aspergillus fumigatus*. Mol Gen Genet 259, 327–335. [These authors compared the frequency and location of foreign DNA insertions using protoplasts or electroporation of spores with or without restriction enzyme-mediated integration (REMI). They also compared 10 restriction enzymes for their effectiveness in promoting single copy DNA integration.]

Bundock P, den Dulk-Ras A, Beijersbergen A, and Hooykaas PJ (1995) Trans-Kingdom T-DNA transfer from *Agrobacterium tumefaciens* to *Saccharomyces cerevisiae*. EMBO J 14, 3206-3214. [This is the first report of the transformation of a member of the fungal kingdom by *Agrobacterium tumefaciens*. They also showed that the vir genes were essential for T-DNA transfer to yeast and that T-DNA integration
occurred by homologous recombination.

Case ME, Schweizer M, Kushner SR and Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci USA 76, 5259-5263. [Used a transformation procedure adapted from S. cerevisiae and showed the first transformation of Neurospora with clear evidence of integration of transforming DNA.]

Collins CM, Hall RH (1985) Identification of a Tn5 determinant conferring resistance to phleomycins, bleomycins and tallysomycins. Plasmid 14, 143-151. [Provides a full description of location and promoter for the phleomycin resistance determinant on Tn5 active in E. coli and S. typhimurium.]

d'Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-phosphate decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30, 76-82. [Developed a disruption cassette called a pyrG blaster that contained a selectable marker within direct repeats. Targeted and non-targeted gene disruption occurred and sequential gene disruptions was accomplished by pyrG excision in the presence of 5-FOA.]

de Bekker C, Wiebenga A, Aguilar G, Wösten HAB (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Meth 76, 305-306. [The authors have compared various combinations of commercially-available hydrodrolases for A. niger protoplasting and determined the optimal composition for protoplast formation. Protoplast survival and transformation efficiency were also determined.]

Dmytruk KV, Voronovsky AY and Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata
(Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50, 183-191. [The authors demonstrated that insertional mutagenesis of the flavinogenic yeast, C. famata yielded useful information on regulatory sequences for flavin biosynthesis. Addition of SalI (REMI) did not increase efficiency of transformation nor did the integration occur at restriction sites.]

Fierro F, Laich F, García-Rico RO and Martin JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol, 90, 2237-2248. [The references from Fierro et al. report on attempts to develop autonomously-replicating plasmids for Penicillium spp.; in both reports, although there was evidence that autonomous replication occurred, mitotic stability was not high and plasmid integration was found.]

Fillinger, S., Panozzo, C., Mathieu, M., Felenbok, B., 1995. The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general catabolite repressor CreA. FEBS Lett 368, 547–550. [Detailed information on the ethanol regulon in A. nidulans under basal conditions.]

Fitzgerald A, Van Kan JA and Plummer KM (2004) Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41, 963-971. [This report describes the successful use of RNAi to knock-down two genes (used for selection) that were placed in tandem in the disrupting construct. The authors also used AMT for transforming the host fungus.]

Ganzlin M, Rinas U. (2008) In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135, 266-71. [These authors analyzed the effects of various monosaccharides on glaA-driven reporter gene expression, finding that only starch and starch hydrolysis products were inducers but glucose repressed at high concentrations. They also identified glucose analogues that were effective inducers of glaA.]

Granado JD, Kertesz-Chaloupkova K, Aebi M, Kunes U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256, 28-36. [Using several restriction enzymes and varying the protoplast preparation, the authors showed that efficiency of REMI in this basidiomycete was determined by the enzyme type and concentration.]
Gunatilleke IAUN, Arst HN and Scbaezocchio C (1975) Three genes determine the carboxin sensitivity of mitochondrial succinate oxidation in Aspergillus nidulans. Genet Res 26, 297-305. [Demonstrated using mitochondrial preparations, that three nuclear gene mutations reduced the oxidation of succinate.]

Ha Y-S, Covert SF and Momany M (2006) FsFKS1, the 1,3-β-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell 5, 1036–1042. [To understand the relative resistance of F. solani to caspofungin, the authors found that FKS1 knockout strains were non-viable but they successfully used RNAi to knock-down expression and identify a phenotype. Expression was driven by the heterologous alcA promoter from A. nidulans.]

Harmsen MC, Schuren FHJ, Moukha SM, van Zuilen CM, Punt HP, and Wessels JGH (1992) Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizothyrium commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr Genet 22, 447–454. [These data explain the low expression levels of genes in basidiomycetes when using ascomycete gpd promoter. The authors analyzed the gpd genes from these basidiomycetes and compared them to yeast and filamentous ascomycetes.]

He Z-M, Price MS, OBrian GR, Giorgianna DR and Payne GA (2007) Improved protocols for functional analysis in the pathogenic fungus Aspergillus fumigatus. BMC Microbiol 7, 104 doi, 10.1186/1471-2180-7-104. [Developed the use of the ble gene encoding phleomycin resistance for positive selection in A. fumigatus. In addition, the N. crassa pyr4 marker was used for selection.]

Hedeler C, Kong HM, Cornell M, Alam I, Soanes DM, Rattray M, Hubbard SJ, Talbot NJ, Oliver SG and Paton, N. (2007) e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics, 8, 426. [The authors have created a single repository of comparative genomic information for more than 30 sequenced fungal genomes accessible via a web interface.]

Hinnen A, Hanks JB and Fink CR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75, 1929-1933. [The first S. cerevisiae transformation based on a ColE1 plasmid; both ectopic and homologous integration into the yeast genome were demonstrated.]

containing the pNiiA promoter from *A. fumigatus* (regulated by nitrate and ammonium) and the pyrG selectable marker flanked by endogenous promoter flanking regions. They identified 250 essential genes in *A. fumigatus*.

Hua-Van A, Pamphile JA, Langin T, and Daboussi MJ (2001) Transposition of autonomous and engineered impala transposons in *Fusarium oxysporum* and a related species. Mol Gene Genet 264, 724-231. [This work describes the transposition of impala in *F. oxysporum* and showed that even divergent genetic elements can activate a defective (transposase-deficient) impala transposon, and that impala can transpose in a heterologous host (*F. moniliforme*).]

Hynes MJ, Corrick CM, and King JA (1983) Isolation of genomic clones containing the *amdS* gene of *Aspergillus nidulans* and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3, 1430-1439. [Describes the fine-scale mapping of the *A. nidulans* acetamidase (*amdS*) gene as well as the 5' regulatory regions.]

Katayose Y, Kajiwara S and Shishido K (1990) The basidiomycete *Lentinus edodes* linear mitochondrial DNA plasmid contains a segment exhibiting a high autonomously replicating sequence activity in *Saccharomyces cerevisiae*. Nucl Acids Res 18, 1395-1400. [Isolation and characterization of linear plasmid sequences from *L. edodes* that contained ARS sequences that were functional in *S. cerevisiae* when cloned into a yeast expression vector.]

reesei and a description of the utility of the cbh1 promoter to drive protein expression.]

Kimura M, Kamakura T, Tao QZ, Kaneko I, and Yamaguchi I (1994) Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. Molec Gen Genet 242, 121-129. [The eukaryotic blasticidin resistance gene was characterized and compared to the gene from B. cereus (bsr); only bsd functioned as a selectable marker in the ascomycete fungus, Pyricularia.]

Kojic M, Holloman W (2000) Shuttle vectors for genetic manipulations in Ustilago maydis. Can J Microbiol 46, 333–338. [The authors described various shuttle vectors based on pUC19 for selection using geneticin, carboxin, nourseothricin, or hygromycin, which either integrate or are autonomously replicated.]

Kooistra R, Hooykaas PJJ and Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21, 781-792. [Cloning and knockout of the genes involved in NHEJ in K lactis (a ku80 mutant) resulted in a dramatic rise in targeted integration to >97% independent of the length of flanking regions.]

Liu YG, Mitsukawa LN, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8, 457–463. [The use of TAIL-PCR to map the genomic sequences flanking the insertion of T-DNA in plants transformed using AMT.]

Magnani E, Bartling L, Hake SC (2006) From GATEWAY to MULTISITE GATEWAY in one recombination event. BMC Molec Biol 7, 46.[The authors created a vector, pDONR-R4-R3 which when recombined with a single site Gateway destination vector, will convert it to a vector that will accept up to three Gateway entry clones.]

Manivasakam P and Schiestl RH (1998) Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol Cell Biol 18, 1736–1745. [An analysis of the types of restriction enzymes and sequence requirements that promoted integration using REMI, as well as the genomic location of integration.]

Michielse CB, Arentshorst M, Ram AFJ, van den Hondel CAMJJ (2005) Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genet Biol 42, 9-19. [Compared AMT-mediated transformation of A. awamori with a PEG/CaCl₂ method, and found that adding a second selectable marker (amdS) to the disruption construct doubled the proportion of gene replacement events.]

Nielsen JB, Nielsen ML and Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45, 165–170. [The authors transiently disrupted the nku gene by using the pyrG as a counterselectable marker, flanked by direct repeats; this will allow restitution of NHEJ activity once the desired genetic changes have been completed.]

Nielsen ML, de Jongh WA. Meijer SL, Nielsen J, and Mortensen UH (2007) Transient marker system for iterative gene targeting of a prototrophic fungus. Appl Environ Microbiol, 73, 7240–7245. [This paper describes an approach similar to the one used for the ku gene in the 2008 publication, except that here the focus is on restoring an auxotrophic strain to wild type once genetic manipulations are done.]

Ninomiya Y, Suzuki K, Ishii C, and Inoue H (2004) Highly efficient gene replacement in Neurospora strains deficient for non-homologous end joining. Proc Natl Acad Sci USA 101, 12248-12253. [The first study with Neurospora crassa in which the deletion of ku70 and ku80 homologues resulted in a dramatic increase in homologous recombination. The sensitivity of the ku knockout strains to various agents is also presented.]

Olempska-Beer ZS, Merker RI, Ditto MD, and DiNovi MJ (2006) Food-processing enzymes microorganisms—a review. Regul Toxicol Pharm 45, 144–158. [This paper reviews the safety of microorganisms used as heterologous hosts for food processing enzymes as well as some regulatory issues. The construction of recombinant strains and methods to improve enzyme properties are also discussed.]

studied the variables affecting transformation efficiency of *A. niger* by electroporation of germinated conidia with and without enzymatic cell wall lysis, and compared this with the efficiency of transformation of protoplasts with CaCl₂-PEG.

Redkar RJ, Herzog RW, and Singh NK (1998) Transcriptional activation of the *Aspergillus nidulans gpdA* promoter by osmotic signals. *Appl Environ Microbiol* 64: 2229-2231. [Although the *gpdA* promoter is considered by most to be constitutive, these authors report that sodium chloride concentration affected the transcriptional activity of an *A. nidulans gpdA*-driven reporter genes in *N. crassa*.]

Schiestl RH and Petes TD (1994) Integration of DNA fragments by illegitimate recombination in *Saccharomyces cerevisiae*. *Proc Natl Acad Sci USA* 88, 7585-7589. [The first example of REMI using *S. cerevisiae*.]

Shoji J, Maruyama J, Arioka M and Kitamoto K (2005) Development of *Aspergillus oryzae thiA* promoter as a tool for molecular biological studies. *FEMS Microbiol Lett* 244, 41-46. [The authors developed an alternative regulatable promoter for *A. oryzae* that does not require change in nutrient for induction. *A. oryzae efp* gene expression driven by the *thiA* promoter was regulated by thiamine concentration in the medium.]

Silar, P (1995) Two new easy to use vectors for transformation. *Fungal Genet. News* 42, 73. [Development of vectors encoding phleomycin or hygromycin resistance driven by *A. nidulans gpd* promoter or the *N. crassa cpc-I* promoter, respectively.]

Smith JE (1994) *Aspergillus*, Plenum, New York, pp 41-76. [The authors examined the importance of single- versus double-stranded transforming DNA in promoting homologous recombination in *S. cerevisiae*.]

Smith RP and Smith ML (2007) Two yeast plasmids that confer nourseothricin-dihydrogen sulfate and hygromycin B resistance in *Neurospora crassa* and *Cryphonectria parasitica*. Fungal Genetics Newsletter 54, 12-13. [The authors validated the use of these plasmids in two fungi as dominant selection markers and for forcing heterokaryons.]

Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for *Agrobacterium*-mediated transformation. Curr Genet 45, 383–389. [The authors generated a set of plasmids using the GATEWAY system that contain the *alcA* promoter and the *argB* selectable marker. These can be used for insertion of PCR products for tagging with a number of fluorescent marker genes as well as hemagglutinin.]
Unkles, SE, Campbell, EI, de Ruiter-Jacobs, YMJT, Broekhuijsen, M, Marco, JA, Carrez, D, Contreras, R, van den Hondel, CAMJJ and Kinghorn, JR (1989) The development of a homologous transformation system for Aspergillus oryzae based on the nitrate assimilation pathway: a convenient and general selection system for filamentous fungal transformation. Mol Gen Genet 218, 99–104. [Transformation of A. oryzae using the A. oryzae niaD gene was demonstrated, as well as expression of the A. oryzae niaD gene in A. niger, A. nidulans and P. chrysogenum. Co-transformation was also observed.]

van Attikum H, Bundock P, and Hooykaas PJJ (2001) Non-homologous end joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20, 6550-6558. [The authors studied the proteins required for integration of T-DNA in S. cerevisiae and found that the NHEJ proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required.]

Varavallo MA, Vieira de Queiroz M, Pereira JF, Ribeiro RA, Soares MA, Ribeiro JB, Fernandes de Araújo E (2005) Development of a transformation system for Penicillium brevicompactum based on the Fusarium oxysporum nitrate reductase gene. Brazil J Microbiol 36, 184-189. [Developed a heterologous transformation system in the industrially important P. brevicompactum using the F. oxysporum niaD gene and showed that integration was at low copy number and random, making this suitable for insertional mutagenesis studies.]

Wellington, M., and E. Rustchenko (2005) 5-Fluoro-orotic acid induces chromosome alterations in Candida albicans. Yeast 22, 57–70. [Studies of prototrophic strains of C. albicans revealed that even brief exposure to 5-FOA could result in major chromosomal aberrations such as duplication or expansion.]

Biographical Sketch

Margo M. Moore obtained her B. Sc. in Biochemistry and her Ph.D. in Pharmacology at the University of British Columbia. She then did post-doctoral studies for two years at the Karolinska Institute and has been on the faculty of Simon Fraser University since 1990. She is currently a professor in the Department of Biological Sciences. Dr. Moore's research on fungi initially focussed on the ability of filamentous fungi to metabolize naturally occurring polyaromatic compounds. More recently, her laboratory has investigated virulence mechanisms in the opportunistic fungal pathogen, Aspergillus fumigatus.