TROPICAL INSECT CHEMICAL ECOLOGY

Edi A. Malo
Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México.

Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting.

Contents

1. Introduction
2. Semiochemicals
2.1. Use of Semiochemicals
3. Pheromones
3.1. Lepidoptera Pheromones
3.2. Coleoptera Pheromones
3.3. Diptera Pheromones
3.4. Pheromones of Insects of Medical Importance
4. Kairomones
4.1. Coleoptera Kairomones
4.2. Diptera Kairomones
5. Synthesis
6. Concluding Remarks
Acknowledgments
Glossary
Bibliography
Biographical Sketch

Summary

In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insects that have been identified to date are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, *Keiferia lycopersicella*, and the Guatemalan potato moth, *Tectia solanivora*. Research into other semiochemicals such as kairomones in tropical insects revealed evidence of their presence in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from *Spondias mombin* for *Anastrepha obliqua* was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.

1. Introduction
Chemical ecology is an interdisciplinary research area that studies the ecological interactions mediated by the chemical compounds that organisms produce. This discipline has its origin in the pioneer works of the German scientist Adolf Butenandt, who identified the sex pheromone of *Bombix mori* after the Second World War. However, general ideas of chemical ecology had already flourished some centuries ago (Hartman 2008). The chemical identification of sex pheromones belonging to the cabbage looper moth, *Trichoplusia ni* (Hübner), one of the major pests of agricultural crops (Shorey et al. 1967), opened the possibility of using pheromones to control insect pests. Chemical insecticides are routinely employed in order to control insect pests. The misuse of insecticides has led to resistance in some insects. Additional problems include the possible harmful effects on human health and the environment. Therefore alternatives such as semiochemicals are used for insect monitoring, mass trapping and mating disruption in a diversity of insects (Wyatt 1998).

The use of pheromones for pest control has made great progress in many countries. However, these advances have been made working with temperate climate pests, mainly in developed countries with a great tradition in research such as the United States of America, Canada, Europe, Japan, Queensland, and Korea. Traditionally, the chemical identification of pheromones of tropical insects is achieved by sending pupae from tropical countries to laboratories in developed countries in order to rear the insects for future pheromone studies (Kalinova et al. 2005). In other cases pupas have been sent from tropical countries to chemical ecology laboratories in developed countries to identify and synthesize pheromone candidates. The identified pheromones are then returned so that they can be tested in the field back in the tropics (Gries et al. 1998). One of the problems with this kind of cooperation is that the biological material does not arrive in good condition and sometimes it is difficult to obtain consistent results. This also results in a dependency relationship between sub developed countries and developed countries, a type of neocolonialism which belongs to the past. Thus, several chemical ecology laboratories have been established in Latin America and Africa as an alternative solution, implementing classic techniques of analysis, identification and synthesis of tropical insect semiochemicals. In tropical zones, there are many insect pests that cause greater damage to crops, in particular Lepidoptera herbivorous insects that are more abundant in tropical rather than temperate forest (Novotny et al. 2006). The chemical ecology of this order has been widely studied, and in the future it is anticipated that new pheromones will be identified from tropical insects. In this chapter, I reviewed some examples of chemical identification of semiochemicals from tropical insect found throughout Latin America.

TO ACCESS ALL THE 27 PAGES OF THIS CHAPTER, Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx
Bibliography

Alpizar D., Fallas M., Oehlschläger A.C., Gonzalez L.M., Chinchilla C.M., and Bulgarelli J. (2002). Pheromone mass trapping of the West Indian sugarcane weevil and the American palm weevil (Coleoptera: Curculionidae) in palmito palm. *Florida Entomologist* 85, 426-430. [This presents invaluable information on pheromone mass trapping].

Andrade R., Rodriguez C., and Oehlschläger A.C. (2000). Optimization of a pheromone lure for Spodoptera frugiperda (Smith) in Central America. *Journal of Brazilian Chemical Society* 11, 609-613. [This paper reexamines the role of the pheromone components of fall armyworms in the field].

Andrews K.L. (1980). The whorlworm, Spodoptera frugiperda, in Central America and neighboring areas. *Florida Entomologist* 63, 456-467. [This is a revision regarding *Spodoptera frugiperda* in Central America].

Angulo A.O., and Weigert G.T.H. (1975). Estados inmaduros de Lepidopteros Noctuidos. *Sociedad de Biología de la Universidad de Concepción* (Chile) 2, 1-54. [This presents the immature stages of Lepidoptera that attacks different pests].

Baddi M.H., and Flores A.E. (2001). Prickly pear pest and their control in Mexico. *Florida Entomologist* 84, 503-505. [This summarizes and briefly discusses the most important insect pest species present in *Opuntia* spp. in Mexico].

Bruno D.W., and Laurence B.R. (1979). The influence of the apical droplet of *Culex* eggs rafts on oviposition of *Culex pipiens fatigans* (Diptera: Culicidae). *Journal of Medical Entomology* 16, 300-305. [This paper reports the evidence of the presence of the oviposition pheromone in *Culex*].

Cerda H., Fernandez G., Lopez A., and Varga J. (1999). Olfactory attraction of the sugarcane weevil (Coleoptera: Curculionidae) to host plant odors, and its aggregation pheromone. *Florida Entomologist* 82, 103-112. [The effect of host plant odors on the sugarcane weevil and this beetle aggregation pheromone are described in this document].

Dunkelblum E., Rodriguez C.L., Oehlschlager A.C., y Vargas M. (1995). Desarrollo de la feromona sexual de *Spodoptera sunia* (Lepidoptera: Noctuidae) en melón. *Manejo Integrado de plagas* (Costa Rica) **37**, 34-38. [This article discusses the field test of the *S. sunia* sex pheromone].

Hamilton J.G.C., Hooper A.M., Mori K., Pickett J.A., Sano S. (1999). 3-methyl-α-himachalene confirmed, and the relative stereochemistry defined by synthesis as the sex pheromone of Lutzomyia longipalpis from Jacobina, Brazil. *Chemical Communications* **4**, 355-356. [This paper describes the stereochemistry of the *L. longipalpis* sex pheromone].

Hernández-Ortiz V., y Aluja M. (1993). Listado de especies del genero neotropical *Anastrepha* (Diptera: Tephritidae) con notas sobre su distribucion y plantas hospederas. *Folia Entomológica Mexicana* **88**, 89-105. [This study reports the list of *Anastrepha* and host-plants].

York: John Willey & Sons. [This chapter gives information on the different methods used the pheromones].

Macedo N., Araujo J.R., and Botelho P.S.M. (1993). Sixteen years of biological control of Diatraea saccharalis (Fabr.) (Lepidoptera: Pyralidae) by Cotesia flavipes (Cam.) (Hymenoptera: Braconidae) in the State of Sao Paulo, Brazil. Anais da Sociedade Entomológica do Brasil 22, 441-448. [This study describes the experience of biological control using C. flavipes during many years].

©Encyclopedia of Life Support Systems (EOLSS)

Mori K., Nakayama T., and Takikawa H. (1996). Synthesis and absolute configuration of sordidin, the male-produced aggregation pheromone of the banana weevil, Cosmopolites sordidus. Tetrahedron Letters 37, 3741-3744. [The synthesis and absolute configuration of sordidin, the male-produced aggregation pheromones is reported in this work].

Novotny V., Drozd P., Miller S.E., Kulfan M., Janda M., Basset Y., and Weiblen G.D. (2006). Why are there so many species of herbivorous insects in tropical rainforest? Science 313, 1115-1118. [The results of these authors rejected the hypothesis that greater host specificity of tropical herbivores accounts for greater insect species diversity].

Ramirez-Lucas P., Malosse C., Ducrot P.H., Lettere M., and Zagatti P. (19996a). Chemical identification, electrophysiological and behavioral activities of the pheromone of *Metamasius hemipterus* (Coleoptera: Curculionidae). *Bioorganic and Medicinal Chemistry* **4**, 323-330. [Antennal response of the pheromone identified of *M. hemipterus* was reported in this work].

Rochat D., Malosse C., Lettere M., Ducrot P.H., Zagatti P., (19996b). Field trapping of *Metamasius hemipterus* with synthetic aggregation pheromone. *Entomologia Experimentalis et Applicata* **80**, 453-460. [This paper reports the results of the field test of the aggregation pheromones of *M. hemipterus*].

Entomology 60, 1541-1545. [This explains the possibility of using sex pheromones to control insect pests].

Sureta T., Quero C., Bosch M.P., Avilés R., Coll F., Renou M., and Guerrero A. (2006). Electrophysiological and behavioral responses of a Cuban population of the sweet potato weevil to its sex pheromone. Journal of Chemical Ecology 32, 2177-2190. [This paper reports that the sex pheromone of sweet potato weevil from Cuba population has been confirmed as (Z)-3-dodecenyl (E)-2-butenoate].

Tafoya F., Lopez-Collado, Stanley D., Rojas J.C., and Cibrian-Tovar J. (2003). Evidence of an aggregation pheromone in males of Metamasius spinolae (Coleoptera: Curculionidae). Environmental Entomology 32, 484-487. [Evidence of an aggregation pheromone in M. spinolae was reported in this study].

Uchoa-Fernandes M., and Vilela E.F. (1994). Field trapping of tomato worm, Scrobipalpuloides absoluta (Meyrick) (Lepidoptera: Gelicidiidae) using virgin females. Anais da Sociedade Entomológica do Brasil 23, 271-276. [This study report field results showed that the females release a potent sex pheromone attractive to males].

Whittaker R.H. (1970b). Communities and Ecosystems. New York: Macmillan Co. [This chapter presents the term “allelochemicals” used to describe chemicals that mediate interspecific interactions].

Biographical Sketch

Edi A. Malo received a BS in biochemical engineering from the Universidad Autónoma de Chiapas (1985), and a Doctoral degree from the Universidad de Barcelona (1997). He undertook a postdoctoral stage from Rutgers University (2006). He is has been a member of the El Colegio de la Frontera Sur (ECOSUR) from 1985 to the present, working on insect Chemical ecology of triatomine bugs, fruit flies, noctuid moths, weevils and ants. His main interest is the study of the electroantennography (EAG) and gas chromatography-electronantennography as a tool in the identification of insect pest semiochemicals (pheromones and kairomones). He is a Member of the National System of Researchers of Mexico.