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Summary 
 
This article presents the most important descriptions of linear continuous time-invariant 
dynamical single input/single output (SISO) systems in the frequency domain. It starts 
with a short review of the Laplace transformation and shows how a single mathematical 
model for a system called a transfer function ( )G s , can be found. This system 
representation allows the interconnection of subsystems in cascade, parallel or feedback 
form in an easy way. The interconnection between the transfer function model and a 
state space model is discussed. The introduction of the complex G-plane directly 
provides the definition of the frequency response, ( j )G ω , as a special case of the 
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transfer function. Different ways for representing the frequency response, for example, 
in a polar plot and in a Bode-diagram, are considered. For the most common elementary 
dynamical systems, like P-, I-, D- and delay elements of first and second order, the 
behavior in the frequency domain is presented. Finally some important system 
characteristics like bandwidth and minimum as well as non-minimum phase behavior 
are defined. 
 
1. Laplace Transformation 
 
The Laplace transformation can be considered to be the most important aid for solving 
linear differential equations with constant coefficients. In most linear continuous-time 
control problems, the corresponding differential equations usually fulfil the necessary 
conditions for applying the Laplace transformation. The Laplace transformation 
represents an integral transformation that relates an original or time function ( )f t  in a 
unique and invertible form to the Laplace or frequency function ( )F s . Thus the 
unilateral Laplace transform of a time function or signal ( )f t  is defined by 
 

0
{ ( )} ( ) ( )e dstf t F s f t t

∞
−= = ∫L ,           (1) 

 
where ( )f t  is assumed to exist only for positive time, 0 t< ≤ ∞ , and js σ ω= +  is 
a complex-valued variable. For the existence of Eq. (1) the integral must converge. The 
smallest value of 0 Re( )sσ ≤  for which this integral exists is called the abscissa of 
convergence. 
 
The original time function can be recovered from ( )F s  by the inversion integral 
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where ( ) 0f t =  for 0t < . Eq. (2) defines the inverse Laplace transform, where c is 
any real number greater than or equal to the abscissa of convergence. The path of 
integration is set parallel, with a displacement of c, to the jω − axis in the s-plane. 
Furthermore, this path of integration is to the right of all singular points of ( )F s . 
 
It is important to note that the Laplace transform has properties of uniqueness and 
invertibility. Therefore, instead of using the inversion integral of Eq. (2) in many cases 
tables for Laplace transform pairs can directly be used, as for example Table 1. 
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Table 1. Laplace transform pairs 

 
Linear differential equations with constant coefficients can be solved by Laplace 
transformation in three steps: 
 

(i) Find the Laplace transform of the differential equation using Table 1 as well 
as the properties of Laplace transformation listed in Table 2. 

(ii) Solve the algebraic equation in the s-domain for ( )F s . 
(iii) Obtain ( )f t  by the inverse Laplace transform of ( )F s . 
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Example: 
 
Given the differential equation 
 

( ) 3 ( ) 2 ( ) e tf t f t f t −+ + =�� �  
 
with the initial conditions (0 ) (0 ) 0f f+ = + =� , its solution can be found in the three 
steps given above: 
 

(i) 2 1( ) 3 ( ) 2 ( )
1

s F s s F s F s
s

+ + =
+

 

(ii) 2
1 1( )

1 3 2
F s

s s s
= ⋅

+ + +
 

(iii) Before applying the inverse Laplace transformation, ( )F s  is expanded into 
partial fractions as follows: 

 

2
1 1 1( )

2 1 ( 1)
F s

s s s
= − +

+ + +
. 

 
Taking the cases No. 6 and 7 in Table 1 and the properties of Laplace transforms in 
Table 2 into account the inverse Laplace transform of ( )F s  directly gives the solution 
of the above differential equation in the form 
 

2( ) e e et t tf t t− − −= − + . 
 
This example shows the importance of the poles 1s , 2s  and 3s  of ( )F s  in the dynamic 
behavior, discussed in more detail in section 3.2. Since all poles here have a negative 
real part, lim ( ) 0

t
f t

→∞
= . If the real part of any pole were positive, the final value of 

( )f t  would tend to infinity. As in control problems, ( )f t  usually represents a 
physical signal, the dynamic behavior of such a control system can be directly analyzed 
from the pole location of ( )F s . This shows how highly important the pole locations of 

( )F s  are for stability. 
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Table 2. Properties of the Laplace transformation 

 
2. Fourier Transformation 
 
If a signal ( )f t  is considered over the time-domain t−∞ ≤ ≤ +∞ , then the Fourier 
transform 
 

j{ ( )} ( j ) ( )e dtf t F f t tωω
∞

−

−∞

= = ∫L            (3) 

 
and the inverse Fourier-transform 
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The complex-valued Fourier transform can be written as 
 

( j ) '( ) j '( )F R Iω ω ω= +  
 
or 
 

j '( )( j ) '( )eF A ϕ ωω ω= , 
 

where 2 2'( ) ( j ) ' ( ) ' ( )A F R Iω ω ω ω= = +  is the Fourier spectrum or amplitude 
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density spectrum and '( ) arctan[ '( ) / '( )]I Rϕ ω ω ω=  is the phase angle curve of 

( j )F ω . The Fourier transform of ( )f t  only exists if ( ) df t t
∞

−∞

< ∞∫ . 

 
3. Transfer Function of a Dynamical System 
 
3.1. Definition 
 
Continuous-time, linear time-invariant systems with lumped parameters and without 
transportation lag having a single input i ( )x t  and a single output 0 ( )x t  (also known as 
SISO systems) can be described by ordinary differential equations of the general form 
 

0 i

0 0

d ( ) d ( ) ,
d d

i jn m
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x t x ta b m n
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= ≤∑ ∑ .           (5) 

 
The transfer function ( )G s  of this system is defined to be the ratio of the Laplace 
transforms of the output (or response function) 0 ( )x t  and the input (or driving 
function) i ( )x t  under the assumption that all initial conditions are zero: 
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           (6) 

 
The transfer function is a property of the system itself, and is therefore independent of 

i ( )x t . If a system exhibits a pure delay the input and output of such a dead-time or 
delay element are related by 
 

0 i d( ) ( )x t x t T= − ,           (7) 
 
where dT  is the dead-time. The transfer function of such a system is obtained by 
applying property 4 of Table 2 to the equation above 
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If a system according to Eq. (5) or Eq. (6) contains an additional dead-time element, the 
differential equation changes to 
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and the corresponding transfer function becomes 
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The response of a linear system to a unit impulse ( )tδ  is the so-called impulse-
response or weighting function ( )g t . Because of the fact that { ( )} 1tδ =L  (see 
Table 1, No. 1) and Eq. (6) we have 
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Hence, the transfer function ( )G s  can also be defined as the Laplace transform of 

( )g t . Therefore ( )G s  and ( )g t  contain the same and complete information about the 
system dynamics. 
 
3.2. Poles and Zeros of ( )G s  
 
It often seems reasonable to factorize the rational transfer function of Eq. (6) as follows: 
 

1 2

1 2

z z z
0

p p p

( )( )
( )

( )( ) ( )
( )( ) ( )

m

n

B sG s
A s

s s s s s s
k

s s s s s s

=

− − −
=

− − −

…
…

           (12) 

 
Due to physical reasons, the coefficients ia  and jb  in Eq. (6) are always real. 

However, the zeros z j
s  and poles pi

s can be real or conjugate complex-valued. Poles 

and zeros can be easily represented in the complex s-plane as depicted in Figure 1. A 
linear time-invariant system without dead-time is thus completely characterized by the 
location of its poles and zeros, and the factor 0k . Furthermore, the poles of ( )G s  are of 
specific importance. To show this we consider the undisturbed  
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Figure 1. Location of the poles and zeros of a system in the s-plane 
 

system in Eq. (5), where i ( ) 0x t ≡  and only n initial conditions are giving rise to the 
output 0 ( )x t . This leads to the problem of solving the homogeneous differential 
equation 
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d ( ) 0
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i i
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Substituting 0 ( ) estx t =  we get the characteristic equation 
 

0
0

n
i

i
i

a s
=

=∑ ,           (13) 

 
which can also be obtained from Eq. (6) or Eq. (12) by setting the denominator 
polynomial ( ) 0A s = , under the assumption that ( )A s  and ( )B s  have no common 
roots. It should be noted that the solutions of the characteristic equation are identical to 
the poles of the corresponding transfer function. 
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