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Summary 
 

Eigenstructure assignment is considered for the controller design of MIMO systems. The 
definition of eigenstructure assignment, the role of the system eigenstructure, the freedom 
for eigenstructure assignment, the allowable eigenvector subspaces, and the calculation of 
feedback controllers are discussed. Several eigenstructure assignment techniques are 
detailed. for example, assignment of desired eigenvectors, comprise between eigenvalues 
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and eigenvectors, and multiobjective eigenstructure assignment. A brief introduction to 
various eigenstructure assignment methods is given: e.g. basic eigenstructure assignment, 
recursive eigenstructure assignment, low sensitive eigenstructure assignment, robust 
eigenstructure assignment, and eigenstructure assignment for descriptor systems and 
dynamical compensator systems. 
 
1  Introduction 
 
In the 1960s, Wonham presented the fundamental result on  eigenvalue assignment in 
linear time-invariant multivariable controllable systems. This states that the closed-loop 
eigenvalues of any controllable system may be arbitrarily assigned by state feedback 
control. Later, Moore found that degrees of freedom are available over and above 
eigenvalue assignment using state feedback control for linear time-invariant multi-input 
multi-output (MIMO) systems. Since then, numerous methods and algorithms involving 
both state and output feedback control have been developed to exercise those degrees of 
freedom to give the systems some good performance characteristics. Some 20 years ago, 
eigenstructure assignment was put aside in favor of frequency domain methods as, at that 
time, it was a rather limited approach to multivariable control system design. 
Eigenstructure assignment was then rather limited to state feedback, and output feedback 
design methods were just beginning. Little attention had been paid to sensitivity 
minimization, control system robustness and dynamical compensator design. The research 
field of eigenstructure assignment now covers all of these topics and the subject is 
certainly mature enough for real application. It is also relatively easy to understand and 
use; control laws designed via eigenstructure assignment are fully implementable and do 
not have high order realizations. 
 

2. Definition of Eigenstructure Assignment 
 
Consider a linear MIMO time-invariant state space control system  
 

x Ax Buδ = +  (1) 
 
y Cx=  (2) 
 
where δx represents ( )x t  for continuous systems and x(t + 1) for discrete systems, 

nx∈R  the state vector, mu∈R  the control input vector, sy∈R  the output vector, and, 
n nA ×∈R  n mB ×∈R  and s nC ×∈R  the system matrices. 

 
Without loss of generality, the following assumption is made for the system Eqs. (1) and 
(2): rank(B) = m, rank(C) = s, and uncontrollable and/or unobservable eigenvalues (or 
poles) are stable. If either of the first two conditions is violated, some transformations are 
needed to obtain an equivalent system, which satisfies the conditions.  
 
The linear output feedback control law is applied to the open-loop system given by Eqs. 
(1) and (2):  
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u Ky=  (3) 
 
where m sK ×∈R  . This results in the closed-loop system  
 

( )x A BKC xδ = +  (4) 
 
Now, let us define a closed-loop self-conjugate eigenvalue set 
 

{ }: , 1, 2,...,i i i nλ λΛ = ∈ =C  (5) 
 
i.e., the set of the eigenvalues of the closed-loop matrix A + BKC, where n  is the number 
of distinct eigenvalues, and C denotes the complex space. For stability of the closed-loop 
system, λi must be in the open complex left plane for continuous systems and in the open 
unit circle for discrete systems. For an uncontrollable and/or unobservable system, the 
uncontrollable and/or unobservable open-loop eigenvalues should be included in the 
closed-loop self-conjugate eigenvalue set Λ. Though state- and output-feedback 
eigenstructure assignment cannot change those eigenvalues, their corresponding 
eigenvectors may properly be chosen to improve the insensitivity of the closed-loop 
matrix and the robustness of the closed-loop system.  
 
For single closed-loop eigenvalues, the corresponding right and left eigenvectors ri and li, 
respectively, of the i -th eigenvalue λi are defined as  
 
( ) 0i iI A BKC rλ − − =  (6) 
 
( ) 0T

i il I A BKCλ − − =  (7) 
 
where 1, n

i ir l ×∈C  . 
 
For multiple closed-loop eigenvalues, denote the algebraic and geometric multiplicity of 
the i -th eigenvalue λi by qi and si, respectively. Then, in the Jordan canonical form of the 
matrix A + BKC, there are si Jordan blocks, associated with the i -th eigenvalue λi, of 
orders pij, j = 1, 2, ..., si, and the following relations: 
 

1

is

ij i
j

p q
=

=∑
 (8) 

 

1

n

i
i

q n
=

=∑
 (9) 

 
Now, let the right eigenvectors and generalized eigenvectors of the matrix A + 
BKC corresponding to the eigenvalue λi be 1

,
n

ij kr ×∈C , k = 1, 2, ..., pij, j = 1, 2, ..., si. The 
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right eigenvector and generalized eigenvector for a multiple eigenvalue are defined as  
 
( ) , , 1 ,0, 0i ij k ij k ijI A BKC r r rλ −− − = − =  (10) 
 
for k = 1, 2, ..., pij, j = 1, 2, ..., si and 1,2,...,i n= . Thus, the right generalized eigenvector 
matrix is given by  

[ ]1 2, ,..., n n
nR R R R ×= ∈ �C  (11) 

 

1 2, ,..., i

i

n q
i i i isR R R R ×⎡ ⎤= ∈⎣ ⎦

�C
 (12) 

 

,1 ,2 ,, ,..., ij

ij

n p
ij ij ij ij pR r r r ×⎡ ⎤= ∈⎣ ⎦

�C
 (13) 

 
for j = 1, 2, ..., si, 1,2,...,i n=  where, in fact, Ri contains all the right eigenvectors and 
generalized eigenvectors associated with the eigenvalue λi. Similar to the definition of the 
right eigenvectors and the generalized eigenvectors, the left eigenvectors and the 
generalized eigenvectors 1

,
n

ij kl ×∈C  for multiple eigenvalues are defined by  
 

( )
, , 1 ,0, 0

ij k ij k

T T
i ijl I A BKC l lλ

−
− − = − =

 (14) 
 
for k = 1, 2, ..., pij, j = 1, 2, ..., si and 1,2,...,i n= . Then, the left generalized eigenvector 
matrix is given by  
 

[ ]1 2, ,..., n n
nL L L L ×= ∈ �C  (15) 

 

1 2, ,..., i

i

n q
i i i isL L L L ×⎡ ⎤= ∈⎣ ⎦

�C
 (16) 

 

,1 ,2 ,, ,..., ij

ij

n p
ij ij ij ij pL l l l ×⎡ ⎤= ∈⎣ ⎦

�C
 (17) 

 
for j = 1, 2, ..., si, 1,2,...,i n= , where, the matrix Li consists of all left eigenvectors and 
generalized eigenvectors associated with the eigenvalue λi. 
 
Eigenstructure assignment may therefore be described simply as the assignment of the 
eigenvalues and eigenvectors (including right eigenvectors, left eigenvectors and 
generalized eigenvectors) of the closed-loop matrix using the linear control law given by 
Eq. (3). It consists, essentially, of the following steps:  
 
• Choose a set (or sets) of possible closed-loop eigenvalues (or poles). 
• Compute the associated so-called allowable eigenvector subspaces, which describe 

the freedom available for closed-loop eigenvector assignment. 
• Select specific eigenvectors from the allowable eigenvector subspaces according to 

some design strategies. 
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• Calculate a control law, appropriate to the chosen eigenstructure. 
 
Eigenstructure assignment is a design technique which may be used to assign the entire 
eigenstructure (eigenvalues, and right or left eigenvectors) of a closed-loop linear system 
via a feedback control law. 
 

3. Role of the System Eigenstructure  
 
The definition of eigenstructure assignment has been given, and now the significance of 
the eigenstructure in terms of the system time response is outlined. 
 
For the sake of simplicity, it is assumed that all eigenvalues are real and distinct. Denote 
the i -th eigenvalue and corresponding right and left eigenvectors of the system described 
by λi, ri and li, respectively. The spectral and modal matrices can then be defined as  
 

[ ]1 2, , ..., n n
nR r r r ×= ∈ �R  (18) 

 
[ ]1 2, , ..., n n

nL l l l ×= ∈ �R  (19) 
 
and  
 

[ ]1 2diag , ,..., n n
nD λ λ λ ×

Λ = ∈ �R  (20) 
 
For the general case, where the modal matrix DΛ is of a Jordan form, the following results 
are also similar. Here, the continuous system case is considered. For the discrete system 
case, the following results can also be applied with some slight modifications. To yield a 
solution to the state equations a transformation is performed so that the closed-loop matrix 
A + BKC takes on the diagonal form as given by Eq. (20). Let  
 
x Rz=  (21) 
 
where the vector nz∈ �R  is a new variable vector. Applying this transformation to the 
system gives 
 

( )1z R A BKC Rz−= +  (22) 
 
y CRz=  (23) 
 
It is clear from the relationship between the eigenvalues and eigenvectors that  
 

( )1R A BKC R D−
Λ+ =  (24) 

 
Thus, the solution to Eqs. (22) and (23) is  
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( )0D t -1y CRe R xΛ=  (25) 
 

( )0D t TCRe L xΛ=  (26) 
 
since R−1 = LT. This may be written as  

( )
1

0i

n
t T

i i
i

y Cre l xλ

=

=∑
 (27) 

 
The eigenstructure plays a key role in the response of the system. It can be seen from Eq. 
(27) that the transient response of the system is characterized by eigenvalues together with 
the right and left eigenvectors. The eigenvalues determine the decay (or growth) rate of 
the response. The right eigenvectors fix the shape of the response. The product of the 
initial condition x(0) and the left eigenvectors determines the amount each mode rie

λi t is 

excited in the response. A judicious choice of a left eigenvector could prevent a mode 
from being excited by a known structure for the initial condition vector by choosing 
li such that liT x(0)= 0. 
 
Now, let us see the role of system eigenstructure assignment in the forced response of the 
system. The controller is then given by  
 

( )u K y r= −  (28) 
 
where r is the reference input or desired output. In a similar manner to the description, the 
forced response of the system is given by  

( ) ( ) ( ) ( )0
t

D tD t T T

0

y t CRe L x CR e L Br dτ τ τΛΛ −= + ∫
 (29) 

 
The eigenstructure also plays an important role in the forced response of the system, 
which is the second term of Eq. (29). From Eq. (29), it is clear that the term LTB is 
significant in the response of the system to the reference-input r. In fact, the product 
LTB indicates how much a particular input excites certain modes. It may be important that 
a certain input has little (or ideally, no) effect on specific modes of the system. For 
example, in the control of an aircraft, it is desirable that a reference input surface that is 
used to influence the longitudinal motion (e.g., the elevator) should not excite modes (e.g., 
the dutch roll) that correspond to lateral motions of the aircraft, and vice versa. This 
process is termed modal decoupling. Hence, assignment of the left eigenvectors or the 
design of a suitable feedforward matrix needs to be considered in the design of a control 
system. 
 
Therefore, in order to provide effective shaping of the response of a system, both left and 
right eigenvector assignment, in addition to eigenvalue assignment (or pole placement), 
must certainly be considered together. 
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4. Freedom for Eigenstructure Assignment 
 
The freedom for the eigenstructure assignment has been examined for both the state 
feedback and output feedback problems. The freedom available for the eigenstructure 
assignment design can be stated by the following 
 
Using the control law u = Ky, max(m, s) eigenvalues may be assigned and min(m, 
s) entries of each corresponding eigenvector can be chosen precisely. 
 
If some freedom for eigenstructure assignment is sacrificed so that certain orthogonality 
conditions between left and right closed-loop eigenvectors are satisfied, it is possible to 
assign more than max(m, s) eigenvalues to the closed-loop system. This is termed the 
output feedback eigenvalue (or pole) placement problem. 
 
To assign more than min(m, s) entries of an eigenvector, a best-fit allowable eigenvector 
must be chosen which approximates the desired vector according to a certain criterion. 
This is achieved by projecting the desired eigenvector into an allowable eigenvector 
subspace, which is a function of the state and input matrices, along with the specific 
choice of closed-loop eigenvalues. 
 
- 
- 
- 
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