MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS

Mathematical Models of Life Support Systems - Volume 1
No. of Pages: 530
ISBN: 978-1-84826-128-0 (eBook)
ISBN: 978-1-84826-578-3 (Print Volume)

Mathematical Models of Life Support Systems - Volume 2
No. of Pages: 508
ISBN: 978-1-84826-129-7 (eBook)
ISBN: 978-1-84826-579-0 (Print Volume)

For more information of e-book and Print Volume(s) order, please click here

Or contact: eolssunesco@gmail.com
CONTENTS

VOLUME I

Mathematical Models of Life Support Systems 1
Valeri I. Agoshkov, Russian Academy of Sciences, Russia

1. Introduction
2. Basic Principles of Mathematical Modeling
 2.1. Types of Modeling: Mathematical Modeling
 2.2. Stages of Mathematical Modeling
 2.3. Requirements for Mathematical Models
 2.3.1. Plurality and Unity of Models
 2.3.2. Adequacy Requirement
 2.3.3. Requirement of Sufficient Simplicity
 2.3.4. Other Requirements of Mathematical Models
 2.4. Determining Components and Relations
 2.4.1. Determining Relations
 2.4.2. Finite Equations
 2.4.3. Equations for Functions of One Variable
 2.4.4. Equations for Functions of Several Variables
 2.4.5. Extremum Problems with Finite Degrees of Freedom: Mathematical Programming
 2.4.6. Extremum Problems With a Sought-For Function
 2.5. Classification of Mathematical Models
 2.5.1. Structural and Functional Models
 2.5.2. Discrete and Continuous Models
 2.5.3. Linear and Nonlinear Models
 2.5.4. Deterministic and Probabilistic Models; Other Types of Model
 2.5.5. Classification of Mathematical Models of Earth’s Life Support Systems
 2.6. General Methods of Analysis; Simplification and Specification of Models
 2.6.1. Dimension Analysis
 2.6.2. Similarity of Objects
 2.6.3. Methods of Simplifying and Specifying Models
3. Mathematical Models in Water Sciences
 3.1. Some classes of mathematical models in water sciences
 3.2. Mathematical Models of Hydrodynamics
 3.2.1. Incompressible Non-Viscous Fluids
 3.2.2. Viscous Incompressible Fluid
 3.3. Mathematical Models of Flows in Rivers, Lakes, and Coastal Waters
 3.3.1. Rivers
 3.3.2. Lakes
 3.3.3. Coastal Waters and Estuaries
 3.4. Mathematical Models of Circulation in Oceans and Seas
 3.5. Mathematical Models for Water Resources Management
4. Mathematical Models of Atmosphere and Climate
 4.1. General Information on Atmosphere and Climate: Classes of Mathematical Model
 4.2. Basic Equations of Atmospheric Processes of Hydrothermodynamics
 4.3. Derivation of Simplified Models and Weather Forecast Models
 4.4. Models of Solar Radiation
 4.5. The Use of Climate Models for Estimating Anthropogenic Impact
5. Mathematical Models in Energy Sciences
 5.1. Classes of Mathematical Model in Energy Sciences
 5.2. Electrodynamic Models
 5.2.1. Maxwell’s Equations
 5.2.2. Main Elements of Electrodynamics
 5.2.3. Kirchhoff’s Equations
 5.3. Mathematical Models of Electric Systems and Networks
5.4. Mathematical Models for Nuclear Reactors
 5.4.1. Nuclear Reactors
 5.4.2. The Four Co-Multiplier Formula: A Simple Mathematical Model of a Nuclear Reactor
 5.4.3. Mathematical Modeling of the Critical Size of a Nuclear Reactor
 5.4.4. Mathematical Model of the Nonstationary Process of Diffusion

5.5. Mathematical Models of Electric Machines

5.6. Mathematical Models of Plasma

6. Mathematical Models in Food and Agricultural Sciences
 6.1. Classes of Mathematical Models
 6.2. Important Factors in Modern Food and Agricultural Modeling
 6.3. Economic Mathematical Models in Agriculture
 6.3.1. Optimizing the Structure of Herds in Animal Husbandry
 6.3.2. Optimizing the Balance Between Branches of the Industry
 6.4. Network Models

7. Mathematical Models in Biological, Health, and Medical Sciences
 7.1. Classes of Mathematical Model
 7.2. Population Growth Models
 7.2.1. The Model of Exponential Growth (Malthus)
 7.2.2. The Model of the Dynamics of Population Size Subject to Competitive Coexistence (Verhulst)
 7.2.3. The “PreyPredator” Mmodel (Volterra)
 7.3. Pharmacological Kinetic Models
 7.4. Mathematical Models in Immunology
 7.5. Models of Epidemic Spread
 7.5.1. Deterministic Model
 7.5.2. Stochastic Model

8. Mathematical Models in Human Social Relations and Global Biosphere Processes
 8.1. Classes of Mathematical Model
 8.2. Global Modeling and Global Models

9. Conclusion
10.3. Mathematical Model
10.4. Hierarchy of Mathematical Models
10.5. Closing Mathematical Models

11. Previous study of mathematical models
11.1. Qualitative Analysis
11.2. Dimensionless Analysis of Problems
11.3. Approximate solutions
11.4. Exact Solutions

12. Numerical algorithms
12.1. Systems of Equations
12.2. Systems of Ordinary Differential Equations
12.3. Problems of Mathematical Physics
12.4. Inverse Problems
12.5. Optimization Problems
12.6. Numerical Algorithms and Parallel

13. Conclusion

Mathematical Modeling of Life Support Systems: Classification of Models

Alexander A. Samarskii, Russian Academy of Sciences, Russia
Petr N. Vabishchevich, Russian Academy of Sciences, Russia

1. Introduction
2. Mathematical models
3. Some classes of mathematical models
4. Linear and nonlinear models
5. Well-and ill-posed problems
6. Point models
7. Distributed models
8. Discrete models
9. Imitation modeling
10. Conclusion

Mathematical Models in Water Sciences

Vladimir B. Zalesny, Russian Academy of Sciences, Russia
Rein Tammsalu, Estonian Marine Institute, Estonia

1. Introduction
2. Mathematical Models in Hydrodynamics
 2.1. Incompressible Inviscid Fluid
 2.2. Compressible Inviscid Fluid
 2.3. Viscous Incompressible Fluid
3. Mathematical Models of Flows in Rivers, Lakes, and Coastal Waters
 3.1. Rivers
 3.2. Lakes
 3.3. Coastal Waters and Estuaries
4. Mathematical Models of Circulation in Oceans and Seas
 4.1. General Circulation of Seas and Oceans
 4.2. Equations of a General Circulation of Seas and Oceans
 4.3. Peculiarities of Large-scale Dynamics of Seas and Oceans
 4.4. Data Analysis
5. Mathematical Models of Water Waves
 5.1. Tidal waves
 5.2. Wind waves
 5.3. Internal waves
 5.4. Tsunami
MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS

6.1. Modeling of Water Quality and Ecosystems
6.2. Structure of Water-Ecosystem Models
6.3. Simplified Ecosystem Model
6.4. Adjoint Equation Analysis

7. Conclusion

Mathematical Models of Circulation in Oceans and Seas 236
Vladimir B. Zalesny, Russian Academy of Sciences, Russia
Rein Tamsalu, Estonian Marine Institute, Estonia

1. Introduction
 2.1. Equations of the General Circulation in Oceans and Seas
 2.2. Boundary Conditions
 2.3. Initial Conditions
 2.4. Total Energy Conservation Law
 2.5. Parameterization of Sub-Scale Physical Processes
3. Solvability of Problems of the Ocean and Sea Dynamics
 3.1. Linear Problems
 3.2. Nonlinear Problems
4. Alternative and Generalized Models of the General Circulation in Oceans and Seas
 4.1. Model Based on Nonlinear Shallow-Water Equations
 4.2. Ocean General Circulation Model in the \(\sigma \)-Coordinate System
 4.3. Generalized Model of Sea Dynamics with a Free Surface in the \(\sigma \)-Coordinate System
 4.4. Two-equation, \(\hat{k} - \varepsilon \) Turbulent Model
 4.5. Nonhydrostatic Model of the Sea Dynamics
5. Numerical Methods
 5.1. The Choice of Differential Formulation of the Problem
 5.2. Methods of Spatial Approximation
 5.3. Methods for Solving the Ocean Problems with Respect to Time
6. Forward and Adjoint Models
 6.1. Statement of the Data Assimilation Problem
 6.2. Initialization Problem

Mathematical Models for Water Resources Management 267
Valentina G. Priazhinskaya, Russian Academy of Sciences, Russia

1. Introduction
2. Mathematical modeling in water resources planning
 2.1. Total state
 2.2. Classes of models of water resources planning and management
 2.3. Optimization models
 2.3.1. Deterministic river basin modeling
 2.3.2. Water flow model
 2.3.3. Stochastic dynamic programming reservoir operating model
 2.3.4. Probability distributions of storage volumes and releases
 2.4. The water resources system simulation model
3. Models of regional agricultural development, location and water use with regard to non-point source pollution
4. Water resources management in the face of climatic/hydrological uncertainties
 4.1. Role of general circulation models in water resources management
 4.2. Mathematical modeling of water demand
5. Water quality management
 5.1. Main problems and criteria of water quality
 5.2. Water quality modeling
 5.3. Mathematical model of water quality improvement
6. Global model of decision-making support system functioning
7. Conclusions

Mathematical Models of Plasma Physics 315

Nikolai N. Kalitkin, *Russian Academy of Sciences, Russia*
Dmitri P. Kostomarov, *Lomonosov Moscow State University, Russia*

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Kinetic models</td>
</tr>
<tr>
<td>2.1.</td>
<td>Liouville equation</td>
</tr>
<tr>
<td>2.2.</td>
<td>BBGKY hierarchy of kinetic equations</td>
</tr>
<tr>
<td>2.3.</td>
<td>Vlasov equation with the self-consistent electromagnetic field</td>
</tr>
<tr>
<td>2.4.</td>
<td>Kinetic equation with the operator of binary collisions</td>
</tr>
<tr>
<td>3.</td>
<td>Transport properties of plasma</td>
</tr>
<tr>
<td>3.1.</td>
<td>Linearized kinetic equation</td>
</tr>
<tr>
<td>3.2.</td>
<td>Potential and cross-section</td>
</tr>
<tr>
<td>3.3.</td>
<td>Electron transport</td>
</tr>
<tr>
<td>3.4.</td>
<td>Viscosity</td>
</tr>
<tr>
<td>3.5.</td>
<td>Relaxation times</td>
</tr>
<tr>
<td>3.6.</td>
<td>Energy exchange</td>
</tr>
<tr>
<td>4.</td>
<td>Magnetohydrodynamic models</td>
</tr>
<tr>
<td>4.1.</td>
<td>One-fluid model</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Isotropy</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Anisotropic conductivity</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>One–dimension models</td>
</tr>
<tr>
<td>4.2.</td>
<td>Two - fluid model</td>
</tr>
<tr>
<td>4.3.</td>
<td>Models of plasma thermophysical properties</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Free energy</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Interaction</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>Plasma composition</td>
</tr>
<tr>
<td>4.3.4.</td>
<td>Equation of state</td>
</tr>
<tr>
<td>5.</td>
<td>Mathematical models of thermonuclear plasma</td>
</tr>
<tr>
<td>5.1.</td>
<td>Controlled thermonuclear fusion</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Reaction of nuclear fusion</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Magnetic and inertial confinement</td>
</tr>
<tr>
<td>5.1.3.</td>
<td>Tokamaks</td>
</tr>
<tr>
<td>5.2.</td>
<td>Mathematical models of toroidal thermonuclear plasma</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Model of toroidal plasma equilibrium. Grad-Shafranov equation</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Magnetohydrodynamic instability of toroidal plasma</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Model of evolution</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Transport models</td>
</tr>
<tr>
<td>5.2.5.</td>
<td>Kinetic models</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Mathematical Models and Simulation in Environment 347

Guri Ivanovich Marchuk, *Russian Academy of Sciences, Russia*
Kirill Y. Kondratyev, *Russian Academy of Sciences, Russia*
Artash E. Aloyan, *Russian Academy of Sciences, Russia*

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Mathematical model for regional transport and transformations of gaseous pollutants and aerosols</td>
</tr>
<tr>
<td>2.1.</td>
<td>Main Equations of Atmospheric Thermo-hydrodynamics</td>
</tr>
<tr>
<td>2.2.</td>
<td>Atmospheric Surface Layer Model and Heat-balance Equation</td>
</tr>
<tr>
<td>2.3.</td>
<td>Turbulent Exchange Coefficients</td>
</tr>
<tr>
<td>2.4.</td>
<td>Initial and Boundary Conditions</td>
</tr>
</tbody>
</table>
2.5. Numerical Model of Transport and Transformations of Multicomponent Gaseous Pollutants and Aerosols
2.6. Gas and Aerosol Fluxes in the Atmospheric Surface Layer
2.7. Initial and Boundary Conditions
2.8. Photochemical Model
2.9. Nucleation and Condensation/Evaporation Model
2.10. Coagulation Model
3. Application of the combined model of atmospheric thermo-hydrodynamics and pollution transport to solving specific environmental problems
3.1. Secondary Photochemical Air Pollution
3.2. Formation of Primary Aerosols in the Atmosphere due to Kinetic Processes of Nucleation, Condensation, and Coagulation
4. Numerical model of global transport and transformations of multicomponent gaseous pollutants and aerosols
4.1. Binary Homogeneous Nucleation
4.2. Photochemical Transformations in the Upper Troposphere and Stratosphere
4.3. Formation of Sulfuric Aerosol Contrails in the Atmosphere of the Northern Hemisphere
4.1. Large-scale Non-geostrophic Forecast Models
4.2. Mesoscale Models
4.3. Mathematical Modeling of the Atmospheric Boundary Layer (ABL)
5. Application of hydrodynamical models to forecasting of local weather patterns
6. Tropical cyclone modeling
 6.1. Modeling of Tropical Cyclone Motion and Development
 6.2. Modeling of Tropical Cyclone Genesis (Formation)
 6.3. Challenges and Opportunities
7. Conclusions

Environmental Pollution and Degradation Models
Guri Ivanovich Marchuk, Russian Academy of Sciences, Russia
Kirill Y. Kondratyev, Russian Academy of Sciences, Russia
Artash E. Alayan, Russian Academy of Sciences, Russia

1. Introduction
2. Mathematical model for global transport of persistent organic pollutants in the Northern Hemisphere
 2.1. Parameterization of the Planetary Boundary Layer
 2.2. Flux of Lindane in the Atmospheric Surface Layer
 2.3. Soil-atmosphere Exchange
 2.4. Environmental Parameters of Persistent Organic Pollutants (Lindane, as an example)
 2.5. Migration of Lindane in Soil
 2.6. Gas-phase Sea-atmosphere Exchange
 2.7. Wet Deposition
 2.8. Degradation in the Atmosphere
3. Numerical results
4. Conclusion

Index

About EOLSS

VOLUME II

Food Production and Agricultural Models: Basic Principles of Development
Oleg D. Sirotenko, All Russian Institute of Agricultural Meteorology, Russia

1. Introduction
2. Classification of Agricultural Models
 2.1. Empirical and Mechanistic Models
 2.2. Static and Dynamic, Deterministic and Stochastic Models
3. Typical Theoretical Models in Agriculture
 3.1. Model of Green Machine (Simulation of Agrocenosis Productivity)
 3.2. Model of Brown Machine (Simulation of Soil Fertility)
4. Agroecosystem Productivity Models and Simulation Systems
 4.1. The Erosion Productivity Impact Calculator
 4.2. Decision Support System for Agrotechnology Transfer
 4.3. Climate-Soil-Yield Simulation System
5. The Use of Models
 5.1. Diagnosing Agrometeorological Conditions and Forecasting
 5.2. Managing Crop Production
 5.3. Assessing Climate and Soil Conditions
6. Experimental Support of Models and Experiment Planning
 6.1. Field Experiment Scheme for Identifying Dynamic Models
 6.2. Considering Climatic Factors in Planning Field Experiments
Mathematical Models of Soil Irrigation and Salting

Ludmila V. Kireycheva, *All-Russian Research Institute of Hydraulic Engineering and Land Reclamation, Russia*

1. Introduction
2. Balance models of calculation of the irrigation regime and crops productivity.
 2.1. The calculation of actual time and water delivery
 2.2. Water and salt balance calculation under slow drainage
 2.3. “Soil-water-crop-atmosphere” water exchange and crop species in modeling
 2.4. The calculation of scheduling program for sprinkler irrigation
 2.5. Water stress influence on crop yield at different phenological phases in irrigation scheduling
 3.1. Vertical water transport in drainage and subsurface irrigation
 3.2. The one-dimensional model of vertical water salt transport
 3.3. One-dimensional model of salute transport in unsaturated-saturated zone. Estimation of ion exchange and sorption
 3.4. The estimation models for the influence of salinity on ground water quality and crop yield
4. The complex simulation models
5. Conclusion

Deterministic Models of Plant Environment

Oleg D. Sirotenko, *All Russian Institute of Agricultural Meteorology, Russia*

1. Introduction
2. Static models: empirical-statistical approach
3. Dynamical models: An approach oriented to process account
4. Deterministic models of energy and mass exchange for plant environment
 4.1. A set of equations for air
 4.2. A set of equations for soil
 4.3. Boundary and initial conditions
 4.4. Ways to simplify the general problem of energy and mass exchange in the soil-plant-atmosphere system
 4.5. Hydrometeorological regime and plant productivity studied by numerical methods
 4.6. Parametrization of energy and mass exchange models

Mathematical Models of Agricultural Supply

Vladimir A. Romanenkov, *Russian Academy of Agricultural Sciences, Russia*
Oleg D. Sirotenko, *All Russian Institute of Agricultural Meteorology, Russia*

1. Introduction
2. Models and decision making in agriculture
3. Mathematical models of optimization and allocation of sown areas
4. Mathematical models of fertilization optimization
5. Complex optimization of resource allocation in crop growing
6. Economic-mathematical models of optimization of structure of herds and flocks
7. Economic-mathematical models of optimization of rations of cattle feeding
8. Economic-mathematical models of optimization of combination of several branches in a farm
9. Economic efficiency of precision agriculture farm application

Mathematical Models in Biophysics

Riznichenko Galina Yu'evna, *Lomonosov Moscow State University, Russia*

1. Introduction
2. Specificity of mathematical modeling of living systems
3. Basic models in mathematical biophysics
 3.2. Limited growth. The Verhulst equation
 3.3. Constraints with respect to a substrate. The models of Monod and MichaelisMenten
 3.4. Competition. Selection
 3.5. The Jacob and Monod trigger system
 3.6. Classic Lotka-Volterra models
 3.7. Models of species interaction
 3.8. Models of enzyme catalysis
 3.9. Model of a continuous microorganism culture
 3.10. Age structure of populations
 3.10.1. Continuous models of the age structure
4. Oscillations and rhythms in biological systems
 4.1. Oscillations in Glycolysis
 4.2. Intracellular calcium oscillations
 4.3. Cellular cycles
5. Space-time self-organization of biological systems
 5.1. Waves of life
 5.2. Autowaves and dissipative structures
 5.3. The basic ‘Brusselator’ model
 5.4. Models of morphogenesis
 5.5. The BelousovZhabotinskii (BZ) reaction
 5.6. Theory of nerve conductivity
6. Physical and mathematical models of biomacromolecules
 6.1. Molecular dynamics
 6.2. Models of DNA Dynamics
7. Modeling of complex biological systems
 7.1. Metabolic control analysis
 7.2. Mathematical models of primary photosynthetic processes
8. Conclusions
4.3. Predator–Prey (Parasite-Host) Models
4.4. Competition and Symbiosis Models
4.5. Multispecies Models
 4.5.1. On Stability in Population Models
 4.5.2. Lotka–Volterra Models
 4.5.3. Evolutionary Stability
 4.5.4. Models with Separating Age-Structure
4.6. Migration Models. Traveling Waves and Dissipative Structures
4.7. Biological Resource Management
4.8. Conclusion

Pattern Formation and Neural Models
Yuri M. Romanovsky, Lomonosov Moscow State University, Russia

1. Introduction
2. Mathematical models of autowave systems of the type “reaction-diffusion” or the models with local connections
 2.1. Basic Model of an Autowave System. Classification of Autowave Processes in Living Systems
 2.2. Classification of the Autowave Processes
 2.3. Experimentally Observed Autowaves
 2.4. Qualitative Theory of the Autowaves
 2.5. Basic Models of the Autowave Processes
 2.5.1. Traveling Fronts
 2.5.2. The FitzHugh-Nagumo Model of a Nerve Traveling Pulse
 2.5.3. Model of autonomous sources of waves
 2.5.4. Models of the Thrombus Formation
 2.6. Models of Stationary Patterns
 2.6.1. Basic Models of the Dissipative Structures
 2.6.2. Dissipative structures in the theory of morphogenesis
 2.7. Autowaves Invoked by the Actin-Myosin Interactions
 2.7.1. Mecanochemical Autowaves
 2.7.2. Model of a Traveling Pulse in Blood Vessels
 2.7.3. Autowaves in Amoeboid Cells
 2.8. Sufficient Existence Conditions for Autowaves in the Systems “ReactionDiffusion”
3. Autowaves in homogeneous neuron-like systems
 3.1. Basic Model of a Homogeneous Neuron-like Distributed System
 3.2. Examples of Application of the Models of Neuron-like Systems to the Investigation of the Regimes of Signal Flow Transformation
 3.2.1. Peculiarities of the Autowave Interaction in a Propagating Depression
 3.2.2. Modeling the Self-excitation Regimes Similar to the Epilepsy-form Activity in the Cortex
 3.2.3. Transformation of Signals on Receptive Fields and the Regimes of Parallel Image Preprocessing by Computers Simulated by the Neuron-like Models

Mathematical Models in Immunology
Sergey G. Rudnev, Russian Academy of Sciences, Russia

1. Introduction
2. Mathematical models of humoral immune response
 2.1. The Models of G. Bel
 2.2. The Models of R. Mohler-C. Bruni
 2.3. The Model of P. Waltman
3. Mathematical models of network interactions in the immune system
 3.1. The Model of P. Richter
 3.2. The Model of G. Hoffmann
 3.3. The Model of R. DeBoer-A. Perelson
4. Mathematical models of lymphocyte circulation
5. Mathematical models of infectious diseases
 5.1. The Basic Model of G.I. Marchuk
 5.2. The Marchuk-Petrov Model of Antiviral Immune Response
 5.3. The Model of Viral Hepatitis B
 5.4. The Model of Influenza A Virus Infection
 5.5. The Model of Antibacterial Immune Response
 5.6. The Model of Bacterial Pneumonia
6. Other models
7. Immune system and optimality
 7.1. Optimal Strategies for an Immune Response
 7.2.1. Energy Cost of Pneumonia
 7.2.2. Infection Immunity and Optimality
8. Concluding Remarks

Mathematical Modeling in Medicine
Alexander V. Karpov, Institute of Biochemistry and Physiology of Microorganisms, Russia

1. Introduction
2. Physiological systems and processes
3. System of blood circulation
 3.1. Mathematical model of heart
 3.2. Haemodynamics of vascular system
 3.3. Neural control of cardiovascular system
4. The respiratory system
5. Regulation of water and salts exchange
6. Thermoregulation
7. Regulation of blood sugar
8. Conclusion

Mathematical Models and Control of Catastrophic Processes
Vladimir Igorevich Arnold, Russian Academy of Sciences, Russia
Aleksey Aleksandrovich Davydov, Vladimir State University, Russia
Victor Anatolievich Vassiliev, Russian Academy of Sciences, Russia
Vladimir Mikhailovich Zakalyukin, Moscow Aviation Institute, Russia

1. Introduction
2. Basic Notions and Examples
 2.1. Catastrophe of the “Pleat”
 2.2. Introduction to Bifurcations in Dynamical Systems
 2.2.1. Bifurcations of Equilibrium States
 2.2.2. Loss of stability
3. Singularity Theory
 3.1. Classification of Functions
 3.2. Geometry and Topology of Discriminant Sets
 3.2.1. Discriminants
 3.2.2. Bifurcation Sets of Functions
 3.3. Caustics, Wavefronts, and Symplectic Geometry
 3.4. Bifurcations and the Problem of choice
 3.5. Monodromy of Complex Singularities and Shock Fronts
 3.5.1. Integral Representations and Complex Fiber Bundles
 3.5.2. An Example: Shock Fronts
4. Singularities in Optimization problems
 4.1. Conflict Sets and Maxwell Strata
 4.2. Singularities of Controllability
5. Conclusions

Models and Methods of Actuarial Mathematics
Vadim I. Arkin, Central Economic Mathematical Institute of RAS, Russia
Sergey Ya. Shorgin, Russian Academy of Sciences, Russia

1. Introduction
 1.1. Brief historical overview and basic concepts of insurance and actuarial mathematics
 1.2. Insurance risks
 1.3. Insurance as a risk diversification mechanism
2. Empirical principles of determination of insurance premiums.
3. Classification of risk models
4. Collective risk model
 4.1. The classic model
 4.2. Generalization of claim generation process
 4.3. Process of claims as a renewal process
 4.4. Large claims
 4.5. Generalizations of classic model of insurance risk
 4.6. On the assumptions of classic model
5. Individual risk model
 5.1. The notion of individual risk model
 5.2. The distribution of total random claims
 5.3. Derivation of exact distribution of claims
 5.4. Estimation of admissible insurance premiums
 5.5. Factorization model of individual claim
 5.6. Asymptotic estimates of admissible insurance tariffs with factorizable claims
 5.7. Guaranteed estimates of insurance tariffs with factorizable risks
 5.8. Discrete dynamic modes
6. Conclusion

Mathematical Modeling and Global Processes
Guri Ivanovich Marchuk, Russian Academy of Sciences, Russia
Yuri S. Osipov, Russian Academy of Sciences, Russia

1. Introduction
2. Mathematical Modeling and the Control Theory in Examining Complex Processes
 2.1. Mathematical Modeling and Progress in Science and Technology
 2.2. Mathematical Description of Systems and Processes
 2.3. Classes of Mathematical Models
 2.4. Governance and Sustainable Development of Society
 2.5. Optimization Problems and the Theory of Optimal Control in Global Processes
3. Numerical Modeling of the General Circulation of the Atmosphere and Oceans; Climate
 3.1. General Circulation of the Atmosphere: Physical Aspects
 3.2. General Circulation of the Atmosphere: Numerical Aspects
 3.3. General Circulation of the Oceans
 3.4. Climate
 3.5. Sensitivity of Models and Predictability
 3.6. Major International Projects
4. Mathematical Modeling of Biospheric Processes
 4.1. General Knowledge on Biospheric Processes and Global Changes
 4.2. Role of Interdisciplinary Studies in Biosphere Science
 4.3. Major Physical Mechanisms Affecting the Environment
 4.5. Direct and Inverse Problems in Modeling the Cross Relations between the Data of Remote Sensing and Parameters of the Biosphere’s State
 4.6. Satellite Monitoring of the Biosphere
4.7. Major International Projects
4.8. Perspectives on the Informational-mathematical Investigation of Biospherical Processes

5. Control Theory and Controllable Dynamics
 5.1. Control Theory
 5.2. Pontryagin’s Maximum Principle
 5.3. Open-loops Controls and Feedbacks
 5.4. Differential Games
 5.5. Open-loops Games as Solution Instruments
 5.6. Optimal Control for the Systems with Distributed Parameters
 5.7. Control Theory, Ill-posed Problems, and Methods of Regularization
 5.8. On Perspectives

6. Scientific Problems for the Twenty-first Century
 6.1. Preservation of the Biosphere
 6.2. Environmental Protection
 6.3. Problems of Power Engineering
 6.4. Problems of Chemical Industries
 6.5. Biotechnology and Biology
 6.6. Space Technology
 6.7. Monitoring
 6.8. Science of Life
 6.9. Fundamental Studies and Global Computerization

Index 441

About EOLSS 449