CONTENTS

TELECOMMUNICATION SYSTEMS AND TECHNOLOGIES

Telecommunication Systems and Technologies - Volume 1
No. of Pages: 406
ISBN: 978-1-84826-000-9 (eBook)
ISBN: 978-1-84826-450-2 (Print Volume)

Telecommunication Systems and Technologies - Volume 2
No. of Pages: 412
ISBN: 978-1-84826-001-6 (eBook)
ISBN: 978-1-84826-451-9 (Print Volume)

For more information on e-book(s) and Print Volume(s) order, please click here

Or contact: eolssunesco@gmail.com
CONTENTS

Preface xiv

VOLUME I

Telecommunication Systems and Technologies 1
Paolo Bellavista, University of Bologna, Italy
Roberto Saracco, Telecom Italia Lab, Italy

1. Telecommunications: Connecting the World
 1.1. The Wireless and the Internet Discontinuities: 10 Years to Change Telecommunications

2. 150 Years in a Blink of an Eye: a Very Short History of Telecommunications
 2.1. The Birth of the Idea of Voice Telecommunications
 2.2. The Conquest of Distance
 2.3. The Conquest of Capacity
 2.4. The Conquest of Intelligence
 2.5. From Analog to Digital

3. What is between Two Telephones?

5. The Wireless World
 5.1. A Simple Taxonomy of Wireless Communication Systems

6. The Convergence of the Internet and Telecommunication Networks

7. The Future of Telecommunications

Fundamentals of Communication Systems 36
Przemyslaw Dymarski, Warsaw University of Technology, Poland
Slawomir Kula, Warsaw University of Technology, Poland

1. Introduction
2. Sources of Information and Source Coding
3. Communication Channels, Modulation, Channel Coding and Synchronization
 3.1. Channels and Introduced Distortions
 3.2. Analog and Digital Modulations
 3.3. Reception and channel coding
 3.4. Synchronization
4. Performance Evaluation
 4.1. Criteria for Comparing Telecommunication Systems
 4.2. Channel Capacity and its Impact on System Performance
5. Concluding Remarks

Fundamentals of Telecommunications 67
Khaled M. Fouad Elsayed, Cairo University, Giza, Egypt

1. Introduction
2. Types of Telecommunication Networks Procedure
 2.1. Circuit-Switched Networks
 2.2. Packet-Switched Networks
 2.2.1. Virtual-Circuit Packet Switching
3. Multiplexing Techniques
 3.1. Frequency-Division Multiplexing
 3.2. Time-Division Multiplexing
 3.3. Statistical Multiplexing
4. Network Protocol Layering
 4.1. The OSI Model
 4.1.1. The Application Layer
 4.1.2. The Presentation Layer
 4.1.3. The Session Layer
 4.1.4. The Transport Layer
 4.1.5. The Network Layer
 4.1.6. The Data Link Layer
 4.1.7. The Physical Layer

5. Telephony and Internet-oriented Technologies
 5.1. Telephony/TDM
 5.1.1. Architecture of the Telephone Network
 5.1.2. Signaling in the Telephone Network
 5.2. The Internet and IP-based Networks
 5.2.1. The Internet Protocol Model

6. Future Outlook

Models and Layered Protocol Organization
Joan Garcia Haro, Polytechnic University of Cartagena, Spain
Josemaria Maglosa-Sanahuja, Polytechnic University of Cartagena, Spain
Pablo Pavon-Marino, Polytechnic University of Cartagena, Spain
Javier Vales-Alonso, Polytechnic University of Cartagena, Spain
5. Concluding Remarks

Analog and Digital Switching

Wojciech Kabacinski, Poznan University of Technology, Poland

1. Introduction
2. Switching Node Architectures
3. Switching Technologies and Techniques
4. Switching Elements, Switches and Switching Fabrics
5. Digital Switching
6. ATM Switching
7. Conclusions

Antenna System in Telecommunications

Shaoqiu Xiao, University of Electronic Science and Technology of China (UESTC), China
Yan Zhang, Simula Research Laboratory, Norway
Honglin Hu, Shanghai Research Center for Wireless Communications (SHRCWC), China
Bailong Xiao, University of Electronic Science and Technology of China(UESTC), China
Bing-Zhong Wang, University of Electronic Science and Technology of China(UESTC), China

1. Introduction
2. Radiation Performance
3. Equivalent Circuit Model
4. The Basic Principle of the Radiation
5. Types of the Antennas and Their Basic Characteristics
6. Array Antennas and Phased Arrays
7. Adaptive and Smart Antennas
8. Propagation Channel Modelling
9. Conclusion

Analog and Digital Transmission of Data

Simon Haykin, McMaster University, Canada

1. Model of a Communication System
2. Analog Transmission
 2.1. Amplitude Modulation
 2.2. Angle Modulation
3. Pulse Modulation
 3.1. Sampling Theorem
 3.2. Pulse-Code Modulation
4. Data Transmission
 4.1. Baseband Data Transmission
 4.2. Passband Data Transmission
5. Spread-Spectrum Modulation
6. Multiplexing and Multiple Accessing
7. Conclusion

Optical Fibers

Atousa Vali Sichani, University of Ottawa, Ontario, Canada
Hussein T. Mouftah, University of Ottawa, Ontario, Canada

1. Introduction
2. Nature of Light
3. Fiber Materials
4. Fiber Cables
5. Fiber Characteristics
6. Fiber Modes
 6.1. Modulation Schemes
 6.2. Multiplexing Techniques
 6.3. Point-to-point Transmission
 6.4. Structural Design
7. Fiber Connectors
8. Governing Standards
9. WDM Systems
10. Fiber Applications
11. Conclusion

Wireless Terrestrial Communications: Cellular Telephony
Ariel Pashtan, Aware Networks, Inc., Buffalo Grove, Illinois, USA

1. Introduction
2. Mobile Networks
 2.1. Cell Sites
 2.2. Mobile RF Spectrum
 2.3. Subscriber Mobility
3. Mobile Terminals
4. Cellular Telephony Evolution: from 1G to 3G
 4.1. 1G Cellular Systems
 4.2. 2G Cellular Systems
 4.3. 2.5G Cellular Systems
 4.4. 3G Cellular systems
 4.4.1. EDGE
 4.4.2. W-CDMA
 4.4.3. cdma2000
5. Cellular Services
 5.1. Text Messaging
 5.2. Instant Messaging
 5.3. Multimedia Messaging
 5.4. E-mail
 5.5. Emergency Calls
 5.6. Wireless Internet
 5.7. Video Service and Mobile TV
 5.8. Push-to-talk
 5.9. IP-based Multimedia Communication
6. Cellular Quality-of-service
 6.1. Basic QoS Concepts
 6.2. UMTS QoS Architecture
7. Billing for Cellular Services
 7.1. Voice and Data Billing
 7.2. Content-based Billing
8. Conclusion

Wireless Terrestrial Communications: Non-Telephony-Oriented Technologies
Marco Chiani, University of Bologna, Bologna, Italy
Andrea Giorgetti, University of Bologna, Bologna, Italy

1. Technical Challenges in Wireless Communications
 1.1. Data Rates, Mobility and Area Coverage
 1.2. Wireless Channel Characteristics
 1.3. Multiple Antenna Systems: Diversity, Interference Mitigation, MIMO
1.4. Modulation and Error Control Techniques
1.5. Multiple Access and Resource Allocation
2. Overview of Current Wireless Systems and Beyond
2.1. Wireless Personal and Body Area Networks
2.2. Wireless Local Area Networks
2.3. Wireless Metropolitan Area Networks
2.4. Wireless Sensor Networks
2.5. Licensed vs. Unlicensed Spectrum: Spectrum Regulation and Cognitive Radio
3. Summary and Conclusive Remarks

Communication Satellites - Technologies and Systems
Lillian L. Dai, Massachusetts Institute of Technology, Cambridge, MA, USA
Jihwan (Patrick) Choi, Massachusetts Institute of Technology, Cambridge, MA, USA
Vincent W.S Chan, Massachusetts Institute of Technology, Cambridge, MA, USA

1. Introduction
2. Satellite Fundamentals
 2.1. Space Segment
 2.1.1. Satellite Bus
 2.1.2. Communication Payload
 2.2. Satellite Orbits and Launch Vehicles
 2.2.1. Special Orbits
 2.2.2. Satellite Constellations
 2.2.3. Launch Vehicles
 2.3. Ground Segment
3. Evolution of Communication Satellite Applications and Systems
 3.1. Early Satellites
 3.2. First-generation Satellites: Fixed Services
 3.3. Second-generation Satellites: Broadcast and Mobile Services
 3.4. Third-generation Satellites: Personal Mobile Services
4. Communication Payload Technologies
 4.1. Link Design
 4.1.1. Free Space Loss and Antenna Gain
 4.1.2. Noise, Rain, Scintillation, and Shadowing Effects
 4.1.3. Link Margin
 4.2. Transparent and Regenerative Repeaters
 4.3. Power Amplifier
 4.4. Modulation and Error Correction Coding
 4.5. Frequency Reuse in Multibeam Satellites
 4.6. Multiple Access
 4.7. Switching / Routing
 4.8. Transport
 4.9. Topology Change and Handover in Networks of Satellites
5. Future Technology Trends and Impacts
 5.1. Space Communications Infrastructure
 5.2. Enabling Technologies and Architecture Concepts
 5.2.1. Optical Crosslink Technology
 5.2.2. Spacecraft Node Switching Architecture
 5.2.3. Shared Spaceborne Processing
 5.2.4. Interoperable Space and Terrestrial Networks
 5.3. Impacts of Communication Satellites
6. Conclusion

Mobile and Wireless Positioning Technologies
Vasileios Zeimpekis, Athens University of Economics and Business, Athens, Greece
1. Introduction
2. The Need for Positioning Determination
3. Radio Positioning Systems
4. Outdoor Positioning Technologies
 4.1. Self Positioning Techniques
 4.1.1. Global Positioning System (GPS)
 4.1.2. Assisted-GPS (A-GPS)
 4.1.3. Differential GPS (D-GPS)
 4.1.4. GLOSNASS
 4.1.5. GALILEO
 4.2. Remote Positioning
 4.2.1. Cell Identification (Cell-ID)
 4.2.2. Direction or Angle of Arrival (DOA-AOA)
 4.2.3. Time Delay
 4.2.4. Enhanced Observed Time Difference (E-OTD)
 4.2.5. Location Pattern Matching (LMP)
5. Indoor Positioning Technologies
 5.1. Infrared-based Positioning
 5.1.1. Active Badge
 5.1.2. Locust Swarm
 5.1.3. IRREAL
 5.2. Ultrasound-based Positioning
 5.2.1. Active Bat
 5.2.2. CRICKET
 5.3. Radio-based positioning
 5.3.1. Wireless LAN (WLAN)
 5.3.2. Bluetooth
 5.3.3. RFID
 5.4. GPS-based positioning
 5.4.1. Indoor GPS
6. A Classification of Location-Based Services (LBS)
 6.1. Individual / Consumer Segment
 6.1.1. Emergency Services
 6.1.2. Navigation Services
 6.1.3. Information Services
 6.1.4. Advertising Services
 6.2. Business Segment
 6.2.1. Supply Chain and Logistics
 6.2.1.1. Fleet management and asset tracking
 6.2.1.2. Rolling inventory management
 6.2.1.3. Product replenishment
 6.2.2. Customer Relationship Management (CRM)
 6.2.3. Sales and Field Force Automation
7. Conclusion

Index

349

About EOLSS

357
VOLUME II

Telecommunication Network Management
Raouf Boutaba,
University of Waterloo, Canada
Xiao Jin,
University of Waterloo, Canada

1. A Foundation for Network Management
2. Telecommunication Networks: Changes in Motion
3. Network and Service Management Architectures
 3.1. Simple Network Management Protocol (SNMP)
 3.2. Telecommunication Management Network (TMN)
 3.3. Telecommunication Information Networking Architecture (TINA)
 3.4. Web Based Enterprise Management (WBEM)
 3.5. Policy Based Management
 3.6. Directory Enabled Networking (DEN)
 3.7. Next Generation Operation Support Systems (NGOSS)
 3.8. Web Services Distributed Management (WSDM)
4. Advances in Network Management Research
 4.1. Management Distribution
 4.2. Java, CORBA and the Web: All about Technologies
 4.3. Integration, Integration, Integration
 4.4. Policy Based Management: Play by the Rules
 4.5. Mobile Agents: Things on the Move
 4.6. Active Networks: The Packet Makeover
 4.7. XML, Web Service and Peer-to-Peer: New Kids on the Block
 4.8. Ontology and Semantics: Reading beyond the Words
 4.9. SLA Based Management: What’s in a Contract
 4.10. Managing Services
5. Management Automation: The Future of Network and Service Management
6. Conclusion

Telecommunication Network Reliability
S. Rai,
Louisiana State University, Baton Rouge, USA
S. Soh,
Curtin University of Technology, Perth, Western Australia

1. Introduction
 1.1. Measure
 1.2. Model and Assumptions
 1.3. Pathset and Cutset - Definition and Enumeration
2. Methods and Improving Computing Time
 2.1. Methods
 2.2. Improving Computing Time
 2.2.1. Preprocessing of Minpaths/Mincuts
 2.2.2. Single-variable Inversion vs. Multiple-variable Inversion
 2.2.3. Special Structures
3. Sum of Disjoint Product Technique for Computing Network Reliability
 3.1. Concept
 3.2. Generalized View
 3.3. SDP Techniques - A Comparison
4. Recent Developments
 4.1. Capacity Related Reliability Evaluation
 4.1.1. Terminology
 4.1.2. Computing CRR from Pathset
 4.1.3. Computing CRR from Cutset
 4.2. Reliability Analysis of Wireless Computer Network
 4.2.1. SDP Technique to Compute the Reliability and EHC of Static Topology WCN
4.2.2. Computing the Reliability and EHC for Special Structure WCN

5. Conclusions

Quality of Service in Telecommunication Networks

Fabricio Carvalho de Gouveia, Technical University of Berlin, Franklinstr, Berlin, Germany
Thomas Magedanz, Technical University of Berlin, Franklinstr, Berlin, Germany

1. Introduction
2. Quality of Service (QoS) Background
 2.1. QoS Definition
 2.2. Telecommunication QoS Characteristics
 2.3. QoS Parameters
3. QoS Management Schemes
 3.1. Policy Based Network Management (PBMN)
 3.2. Integrated Services (IntServ)
 3.3. Differentiated Services (DiffServ)
 3.4. Multi-Protocols Label Switching (MPLS)
 3.5. Asynchronous Transfer Mode (ATM)
4. Current Research Efforts in emerging IMS QoS Solutions
5. Conclusion

Power Management

Giuseppe Anastasi, Department of Information Engineering, University of Pisa, Italy
M. Conti, CNR-IIT Institute, Italy
E. Gregori, CNR-IIT Institute, Italy
A. Passarella, CNR-IIT Institute, Italy

1. Introduction
2. Storing and Harvesting Energy
 2.1. Harvesting Energy from the Environment
3. General Approaches to Power Management in Mobile Devices
 3.1. Energy Characteristics of Mobile Devices
 3.2. Framework for Power Management
 3.2.1. Possible Strategies
 3.3. Reactive Policies
 3.3.1. Predictive Policies
 3.3.2. Stochastic Policies
 3.4. Workload Modifications
 3.4.1. Proactive Policies
 3.4.2. Mixed Policies
 3.5. Qualitative Comparison
4. Power Management in Infrastructure-based Mobile Systems
 4.1. MAC Protocols with Low Duty Cycle
 4.1.1. IEEE 802.11 PSM
 4.1.2. Adaptive PSM
 4.1.3. Bounded Slowdown Protocol (BSD)
 4.2. Sleep/Wake up Software Protocols
 4.2.1. Application-driven Power Management
 4.2.2. Communication-based Power Management
 4.3. Hybrid Protocols
 4.3.1. Self-Tuning Power Management (STPM)
 4.3.2. Cross-Layer Power Management
5. Power Management in Pervasive Systems
 5.1. Power Management in Multi-hop Ad Hoc Networks
 5.2. Power Management in Sensor Networks
6. Conclusions

Wireless Networks: Opportunities for Infrastructure-Related Optimization

Chutima Boonthum, *Hampton University, Hampton, VA 23668, USA*
Stephan Olariu, *Old Dominion University, Norfolk, VA 23529, USA*
Ekaterina Shurkova, *Old Dominion University, Norfolk, VA 23529, USA*
Lan Wang, *Old Dominion University, Norfolk, VA 23529, USA*
Qingwen Xu, *Old Dominion University, Norfolk, VA 23529, USA*

1. Introduction
2. Cellular Networks - Basics
 2.1. Channel Assignment Schemes - A Quick Overview
3. Satellite Networks
 3.1. Challenges
 3.2. Mobility Model and Traffic Parameters
 3.3. SILK - A Selective Look-ahead Bandwidth Allocation Scheme
 3.3.1. SILK the Basic Idea
 3.3.2. SILK the Call Admission Strategy
4. An Efficient Infrastructure for Wireless Sensor Networks
 4.1. Background: Sensor and Sensor Networks
 4.2. Structure and Organization of a Wireless Sensor Network
 4.3. Recent Work
 4.4. Clustering – A Standard Way of Building a Virtual Infrastructure
 4.5. Leader Election
 4.6. Beacon Frame
 4.7. Collision Resolution
 4.8. Slot Competition
 4.9. The Active Gateway Mechanism
 4.9.1. Active Gateway Table
 4.9.2. Active Gateway Confirmation
 4.10. Cluster Maintenance
5. A Bio-mimetic View of Sensor Networks
 5.1. An ecological model for sensor networks
 5.2. Aggregating sensed data: centralized vs. decentralized
6. Concluding Remarks

Mobility Management In Wireless Systems

Jiang Xie, *The University of North Carolina at Charlotte, USA*
Shantidev Mohanty, *Intel Corporation, USA*

1. Introduction
2. Importance of Mobility Management
3. Location Management
 3.1. Location Management in Stand-Alone Cellular Networks
 3.2. Location Management in Non-IP-Based Heterogeneous Cellular Networks
 3.3. Location Management in IP-Based Wireless Networks
4. Handoff Management
 4.1. Handoff Process in Stand-Alone Cellular Networks
 4.2. Handoff Process in IP-Based Wireless Networks
 4.2.1. Network-Layer Handoff Management
 4.2.2. Transport-Layer Handoff Management
 4.2.3. Application-Layer Handoff Management
 4.2.4. Different Steps for Handoff Process of the Existing Mobility Management Protocols
5. Research in Mobility Management
 5.1. Research in Location Management
 5.1.1. Research in Location Registration
5.1.2. Research in Paging
5.2. Research in Handoff Management
 5.2.1. Single-Layer Handoff Management
 5.2.2. Cross-Layer Handoff Management
 5.2.3. Application Adaptive Handoff Management

6. Conclusion

Location-aware telecommunication services
Dario Bruneo, University of Messina, Italy
Luca Paladina, University of Messina, Italy
Maurizio Paone, University of Messina, Italy
Antonio Puliafito, University of Messina, Italy

1. Introduction
2. A Brief Analysis of the Location Concept
3. Design Issues of Location-aware Service Provisioning
 3.1. Reference Scenarios
 3.2. Actors Involved in the LAS Provision
 3.3. Service Classification
 3.4. LAS Architecture
4. Positioning Techniques
5. An Overview of the Geographic Information System
6. Middleware Solutions
 6.1. The OpenGIS Location Services (OpenLS)
7. Privacy and Security Implications
8. Conclusion

Session Management in Advanced Telecommunication Services
Anand Ranganathan, IBM T.J. Watson Research Center, USA
Dipanjan Chakraborty, BM India Research Lab, India

1. Introduction
2. Overview of Session Maintenance in Circuit Switched Networks (PSTN)
 2.1. ISDN Session Channels
 2.2. Common Channel Signaling System Number 7 (SS7)
 2.2.1. SS7 Architecture Overview
 2.2.2. Relationship to OSI Stack and Layer Overview
 2.2.3. Signaling Connection Control Part (SCCP) and User Parts
 2.2.4. Performance Parameters
 2.2.5. SS7 Signals over the Internet
3. Session Maintenance in Packet Switched Networks
 3.1. Gateways
 3.2. Major Hurdles in Reaching Circuit-switched Standards
 3.3. H.323 Primer
4. Session Maintenance in Wired and Wireless Networks: Session Initiation Protocol
 4.1. Overview of SIP Functionality
 4.2. Why SIP?
 4.3. SIP Network Elements
 4.4. SIP Operation
 4.4.1. Basic Call Setup (Initiating a Session)
 4.4.2. SIP Registration
 4.5. SIP Extensions
 4.6. Comparison of SIP with H.323
5. Some Specific Examples of the Use of SIP
 5.1. SIP and 3GPP for Cellular Networks
 5.2. SIP for Advanced Telephony
5.3. SIP and Unified Communication
5.4. Collaboration
6. Conclusions

Context Aware Telecommunication Services
Bill N. Schilit, Fuji Xerox Palo Alto Laboratory (FXPAL), USA
David M. Hilbert, Fuji Xerox Palo Alto Laboratory (FXPAL), USA
Jonathan Trevor, Fuji Xerox Palo Alto Laboratory (FXPAL), USA

1. Introduction
2. Dimensions of Context-aware Communication
3. Context-aware Communication
 3.1. Routing
 3.2. Addressing
 3.3. Messaging
 3.4. Providing Awareness
 3.5. Screening
4. Context-Aware Communication Products
5. Conclusions

Network Security
Christos Douligeris, Department of Informatics, University of Piraeus, Greece
Panayiotis Kotzanikolaou, Department of Informatics, University of Piraeus, Greece

1. Introduction
 1.1. Security in Information Technology
 1.2. Computer Networks
 1.3. Telecommunication Networks
 1.4. The Goals of Network Security
2. Network Security Threats and Attacks
 3.1. Security Services
 3.2. Security Mechanisms
4. Security Issues in Wireless Networks
5. Conclusion

Telecommunication Network Interoperability
Paulo Teixeira de Sousa, European Commission, Belgium
Peter Stuckmann, European Commission, Belgium

1. Introduction
 1.1. Definition of Interoperability
 1.1.1. Network View
 1.1.2. Customer View
 1.1.3. System View
 1.2. The Need for Interoperability
 1.3. How to Achieve Interoperability
 1.4. Interoperability and Standards
2. Levels of Network Interoperability
 2.1. Network Convergence – Next Generation Networks and Beyond
 2.2. Fixed-Mobile Convergence – The IP Multimedia Subsystem
 2.3. Service Interoperability
 2.3.1. PARLAY and Open Service Access
 2.3.2. Open Mobile Alliance
 2.4. Network Management Interoperability
2.5. Digital Content Interoperability

3. Impact of Convergence on Society
 3.1. European Union Policies for Convergence
 3.2. Situation and Current Trends
 3.2.1. Broadband Access
 3.2.2. Mobile Communications
 3.2.3. Consumer Electronics
 3.2.4. Digital Content and Services
 3.2.5. eBusiness

4. Research Challenges for Interoperability
 4.1. Cooperation of Heterogeneous Networks
 4.1.1. Network Composition
 4.1.2. Mobility
 4.1.3. Heterogeneity
 4.2. Re-configurability
 4.3. Interoperable Services
 4.3.1. Mobile Services and the Internet
 4.3.2. Towards an Interoperable Service Platform
 4.4. The Internet of the Future

5. Conclusion

Telecommunication Project Management
Mostafa Hashem Sherif, AT&T, Middletown New Jersey, USA

1. Introduction
2. Management of Standard Production
 2.1. The Networking Technologies
 2.2. The Operation Support Systems (OSS)
 2.3. Methods and Procedures (M&Ps)
 2.4. Content and Applications
3. Examples of Projects in Telecommunication Services
 3.1. Adding Capabilities to Public Networks
 3.2. Establishing Specialized Networks
 3.3. Temporary Networks
4. Characteristics of Projects in Telecommunication Services
 4.1. Complex Interfaces
 4.2. International dimension
 4.3. Multidisciplinary Activities
 4.4. No Mass Production
 4.5. Diverse User Community
 4.6. A Relatively Long Planning Stage
5. How are Public Telecommunication Services Developed?
 5.1. Opportunity Analysis and Concept definition
 5.2. Product Definition and Project Set-Up
 5.3. Design and Procurement of Equipment
 5.4. Service Development
 5.5. Service Turn-up
 5.6. Business and Network Evolution
6. Concluding Remarks

Standards for Networked Equipment and Services
Mostafa Hashem Sherif, AT&T, Middletown New Jersey, USA

1. Introduction
2. Management of Standard Production
 2.1. The Nature of the Standards Setting Organizations
2.2. Participation
2.3. Access to Documentation
2.4. Decision-Making Process
2.5. Intellectual Property Considerations
2.6. Standards Maintenance and Retirement
3. The Management of Standard Development
 3.1. Stakeholders Analysis
 3.2. Standards Quality
4. Subject Matter Classification of ICT Standards
5. Life-Cycle Based Classification of ICT Standards
 5.1. Technology Life Cycle
 5.2. Anticipatory Standards
 5.3. Enabling Standards
 5.4. Responsive standards
 5.5. Standard Development Organizations and the Technology Life Cycle
6. Standardization and Innovation
 6.1. Classification of Innovations
 6.1.1. Incremental Innovations
 6.1.2. Architectural Innovations
 6.1.3. Platform Innovations
 6.1.4. Radical Innovations
 6.2. Innovation and Standardization within the Technology Life Cycle
 6.2.1. Architectural Innovations and Standards Wars
 6.2.2. Architectural Innovations and the Lack of Standards
7. Standardization and Innovation in Networked Services
 7.1. Incremental Innovation
 7.2. Architectural Innovation
 7.3. Platform Innovation
 7.4. Radical Innovation
 7.5. Interactions of Innovations in Equipment and Services
 7.6. Lack of Standards in Networked Services
8. Conclusions

Index 355

About EOLSS 361