CONTENTS

VOLUME XX

Automation and Control in Traffic Systems
Ernst Dieter Dickmanns, University of the Bundeswehr, Munich, Germany

1. Introduction
2. General Aspects of Automation and Control of Traffic Systems
 2.1. Planning of Optimal Trajectories
 2.2. Realization of Trajectories for Transportation
 2.2.1. Subdivision into Mission Elements (Navigation)
 2.2.2. Dealing with Perturbations and Uncertainties
 2.3. Cascaded Coarse to Fine Control
 2.4. Self-monitoring
3. Global Infrastructure for the Automation of Traffic Systems
4. Onboard Means for the Automation of Traffic Systems
6. Conclusions

Automotive Control Systems
Uwe Kiencke, University of Karlsruhe (TH), Germany

1. Introduction
2. Potential of Alternate Fuels and Propulsion Systems
3. Basic Engine Operation
4. Lambda Control
5. Idle Speed Control
6. Knock Control in SI Engines
 6.1. Knock Control
7. Vehicle Modeling
8. ABS Control Systems
9. Yaw Dynamic Control
 9.1. Derivation of Simplified Control Law

Intelligent Control of Road Vehicles for Automated Driving: Path Architecture for Automated Highway Systems and Lateral Guidance
M. Tomizuka, University of California, Berkeley, California, U.S.A.
P. Hingwe, University of California, Berkeley, California, U.S.A.
J.-Y. Wang, University of California, Berkeley, California, U.S.A.
M. Tai, University of California, Berkeley, California, U.S.A.

1. Introduction
2. AHS Architecture
3. Vehicle Models for Lateral Control
4. Road Reference System
5. Lateral Controllers for AHS
 5.1. FSLQ Controller
 5.2. Sliding Mode Controllers
 5.3. Lateral Controllers for High Speed Driving
 5.4. Lane Change Maneuvering and Backward Driving
6. Modeling and Lateral Control of Heavy Duty Vehicles
 6.1. Motivations for and Introduction to Automated Driving of Heavy Duty Vehicles
 6.2. Linearized Model of Heavy Duty Vehicles
 6.2.1. Linearized HDV Model in Unsprung Mass Reference Frame
6.2.2. Linearized HDV Model in Road Reference Frame

6.3. Linear Robust Controller for Heavy Duty Vehicles
 6.3.1. Theoretical Backgrounds for H_∞ Loop-Shaping Design
 6.3.2. Control Synthesis and Simulation
 6.3.3. Experimental Results

6.4. Sliding Mode Controller for Heavy Duty Vehicles
 6.4.1. Sliding mode controller
 6.4.1.1. Model reformulation
 6.4.1.2. Design of Sliding Mode Control
 6.4.1.3. Simulation results of SMC

7. Concluding Remarks

Ship Steering
88
Job van Amerongen, University of Twente, Enschede, the Netherlands

1. Introduction
 1.1. History

2. Modeling
 2.1. Hydrodynamic Models
 2.2. Transfer Functions
 2.2.1. Models of Nomoto
 2.2.2. Multivariable Model
 2.2.3. Roll Model
 2.2.4. Model of the Steering Machine
 2.3. Disturbance Models

3. Automatic Steering
 3.1. Control of the Steering Machine
 3.2. PID Course Control
 3.3. Course Keeping
 3.3.1. LQG Solution
 3.4. Course Changing
 3.5. Adaptive Control
 3.5.1. Model-Reference Adaptive-Control Systems
 3.5.2. Self-Tuning Regulator
 3.6. Fuzzy Control
 3.7. Roll Reduction
 3.7.1. Rudder-Roll Stabilization
 3.8. Other Approaches

4. Review of the Different Controller Strategies for Different Classes of Ships

5. Conclusions, Future Developments, and Further Reading
3.3. Braking Control
3.4. Anti-slip Control
4. Pantograph Control
5. Suspension and Guidance
 5.1. Tilting Control
 5.2. Active Secondary Suspensions
 5.3. Active Steering of Wheelsets
 5.4. Technology of Control
6. Conclusion and Trends

Train and Railway Operations Control 132
Eckehard Schnieder, Institute for Traffic Safety and Automation Engineering, Technical University of Braunschweig, Germany

1. Introduction
2. Control system overview
3. Single train control
 3.1. Control Objectives and Restrictions
 3.2. Process and Control Model
 3.3. Control Objectives and Tasks
 3.4. Control Structures for Train Motion Control
4. Multiple train control and protection on a single track
 4.1. Controlled Objects and Objectives
 4.2. Control Model
 4.3. Control and Protection Tasks
 4.4. Control Structure
5. Multiple train on multiple track (Network control)
 5.1. Controlled Objects and Objectives
 5.2. Process Model
 5.3. Control Tasks
 5.4. Control Structure

Aerospace 150
Donald McLean, Southampton University, UK

1. Introduction
2. Control of Aeronautical Vehicles
3. Aircraft Flight Control Systems
 3.1. General
 3.2. Air Traffic Control
 3.3. Flight Phases
 3.4. AFCS Reliability
4. The Principles of Flight Control
5. Primary Flying Controls
6. AFCS Modes
8. Flight Control Functions
10. Conclusions

Index 167

About EOLSS 173