CONTENTS

VOLUME VIII

Full-Order State Observers
Bernard Friedland, *Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA*

1. Introduction
2. Linear Observers
 2.1. Continuous-Time Systems
 2.1.1. Optimization
 2.1.2. Pole-Placement
 2.2. Discrete-Time Systems
3. The Separation Principle
4. Nonlinear Observers
 4.1. Using Zero-Crossing or Quantized Observations
 4.2. Extended Separation Principle
 4.3. Extended Kalman Filter

Reduced-Order State Observers
Bernard Friedland, *Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA*

1. Introduction
2. Linear, Reduced-Order Observers
3. Nonlinear Reduced-Order Observers

Kalman Filters
Mohinder Singh Grewal, *California State University, Fullerton, USA*

1. Introduction
2. White Noise
3. Linear Estimation
4. The Linear Optimal Estimator in Discrete Time (Kalman Filter)
 4.1. Summary of Equations for the Discrete-Time Kalman Estimator
5. The Continuous-Time Optimal Estimator (Kalman-Bucy Filter)
6. Nonlinear Estimation
 6.1. Linearization about a Nominal Trajectory
 6.2. Linearization about the Estimated Trajectory
 6.3. Linearized and Extended Kalman Filters
7. Implementation Methods
 7.1. Modified Cholesky (UD) Decomposition Algorithms
 7.2. Bierman-Thornton UD Filtering
 7.2.1. Bierman UD Observational Update
 7.2.2. Thornton UD Temporal Update
8. Present and Future Applications of the Kalman Filter

Pole Placement Control
Ackermann, J.E., *Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany*

1. Introduction
2. Separation of state observation and state feedback
3. The single-input case

©Encyclopedia of Life Support Systems (EOLSS)
3.1. Ackermann’s formula
3.2. Numerically stable calculation via Hessenberg form

4. The multi-input case
 4.1. Non-uniqueness
 4.2. Feedback invariants
 4.3. Deadbeat control
 4.4. Reviving the Brunovski structure
 4.5. Polynomial notation
 4.6. Calculation without canonical form
 4.7. Numerically stable calculation via HN form

Eigenstructure Assignment for Control
Guo Ping Liu, University of Glamorgan, Pontypridd, U.K.
Ron John Patton, University of Hull, Hull, U.K.

1. Introduction
2. Definition of Eigenstructure Assignment
3. Role of the System Eigenstructure
4. Freedom for Eigenstructure Assignment
5. Allowable Eigenvector Subspaces
6. Calculation of Controller Matrices
7. Assignment of Desired Eigenvectors
8. Compromise between Eigenvalues and Eigenvectors
9. Parametric Eigenstructure Assignment
10. Multiobjective Robust Eigenstructure Assignment
11. Various Eigenstructure Assignment Techniques
 11.1. Basic Eigenstructure Assignment
 11.2. Recursive Eigenstructure Assignment
 11.3. Low Sensitive Eigenstructure Assignment
 11.4. Robust Eigenstructure Assignment
 11.5. Eigenstructure Assignment for Descriptor Systems
 11.6. Eigenstructure Assignment for Dynamical Compensators

Optimal Linear Quadratic Control
João Miranda Lemos, INESC-ID/IST, R. Alves Redol 9, 1000-029 Lisboa, Portugal.

1. Introduction
2. The LQ regulator in continuous time
3. The steady-state LQ regulator in continuous time
 3.1. The Algebraic Riccati Equation
 3.2. Analytic Solution of the Riccati Equation
4. Properties of the steady-state LQ regulator in continuous time
 4.1. Optimal Pole Locations and the Chang-Letov Design Method
 4.2. Relative Stability Margins
 4.3. The Inverse Optimal Control Problem
5. The LQ regulator in discrete time
 5.1. Time-varying Plants
 5.2. Steady-state Output Regulation
 5.3. Optimal Pole Locations
 5.4. Cheap Control
6. Numerical methods
7. Conclusions

Pontryagin's Maximum Principle
Alexander B. Kurzhanski, Faculty of Computational Mathematics and Cybernetics, Moscow State University, Russia

©Encyclopedia of Life Support Systems (EOLSS)
1. Introduction
2. An Example
3. The problem of Optimal Control
4. A More Rigorous Formulation of the Problem
5. The Maximum Principle
6. A Discussion
7. The Time-Optimal Control Problem
8. Time-Optimal Control for Linear Systems
9. Other Performance Indices
10. Interpretations and generalizations of the Maximum Principle

Decoupling Control

M. Fikar, Department of Process Control, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia

1. Introduction
 1.1. Preliminaries
 1.1.1. Multivariable System Description
 1.1.2. Control Structures Used for Decoupling
 1.1.3. Square and Non-square Systems
 1.1.4. Problem Formulation
 2. Control of a Heat Exchanger
 2.1. Model
 2.2. Static Decoupling
 2.3. Dynamic Decoupling
 2.4. Process Control Decoupling
 2.5. Concluding Remarks for the Heat Exchanger
 3. Dynamic Decoupling
 3.1. Linear State Feedback with Input Dynamics
 3.2. Linear State Feedback
 3.3. Square Systems
 3.4. Output Feedback Decoupling
 3.5. Block Decoupling
 3.6. Triangular Decoupling
 3.7. Cost of Decoupling
 4. Static decoupling
 5. Process Control Decoupling Design
 5.1. Ideal Decoupling
 5.2. Simplified Decoupling
 5.3. Inverted Decoupling
 6. Other Topics

Controller Design using Polynomial Matrix Description

Didier Henrion, Laboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique, Toulouse, France.
Michael Šebek, Center for Applied Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.

1. Introduction
2. Polynomial Approach To Three Classical Control Problems
 2.1. Dynamics Assignment
 2.2. Deadbeat Regulation
 2.3. H_2 Optimal Control
3. Numerical Methods for Polynomial Matrices
 3.1. Diophantine Equation
 3.2. Spectral Factorization Equation
Design Techniques in the Frequency Domain

Edmunds, J.M, *Control Systems Center, UMIST, UK*
Munro, N, *Control Systems Center, UMIST, UK*

1. Frequency Responses and Stability
 1.1. Single loop stability
 1.2. Multivariable stability using Characteristic loci
 1.3. Multivariable stability using Gershgorin bands on Nyquist arrays
 1.4. Diagonal Dominance
2. Basic Design
 2.1. Multivariable Design Methods
 2.2. Integrating the multivariable design methods
3. A Design Example for an Unstable Chemical Reactor
 3.1. Description of the chemical reactor
 3.2. Uncompensated squared down reactor
 3.3. Scaling
 3.4. High and low frequency compensation
 3.5. Closed loop analysis

Design Techniques for Time-Varying Systems

Pablo A. Iglesias, *Johns Hopkins University, USA*

1. Introduction
2. Model Descriptions
 2.1. State-Space Models
 2.2. Input-Output Models
 2.2.1. Impulse Response
 2.2.2. Polynomial Fraction Descriptions
 2.3. Converting from One Description to Another
 2.4. Frequency Domain Techniques
3. Stabilization Techniques
 3.1. Stability
 3.1.1. Lyapunov Stability
 3.2. State Feedback Stabilization
 3.2.1. Controllability, Stabilizability, Observability, and Detectability
 3.2.2. Cheng’s Method
 3.2.3. Optimal State-Feedback Regulator
 3.3. Output Feedback
 3.3.1. Pole Placement
4. Causal information controllers
 4.1. Frozen time approach
 4.2. Linear parameter varying systems

Servo Control Design

Timothy Chang, *New Jersey Institute of Technology, Newark, NJ, USA*

1. Introduction
2. Classical Servo Control Design
 2.1. Integrator Based Control
 2.1.1. Design Example: Industrial Regulator
 2.2. Phase Lag Control
 2.2.1. Design Example: Phase Lag Compensation
 2.3. Phase Lead Control
2.3.1. Design Example: Phase Lead Compensation

3. Modern Servo Control Design
 3.1. Feedforward Control: Input Shaping
 3.1.1. Mathematical Analysis of the Input Shaping Scheme
 3.1.2. Design Example: Input Shaping for Unit Step Command
 3.2. Feedback Control
 3.2.1. Controller Parameterization
 3.2.2. Time Domain Parameter Optimization
 3.2.3. Frequency Domain Parameter Optimization
 3.2.3.1. Design Example: Frequency Domain Parameter Optimization

4. Conclusions

Index 303

About EOLSS 311