## CONTENTS

### VOLUME I

#### Biotechnology

Edgar J. DaSilva, *International Scientific Council for Island Development, France*

Horst Werner Doelle, *MIRCEN-Biotechnology, Australia*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Historical Development</td>
</tr>
<tr>
<td>2</td>
<td>Present Development</td>
</tr>
<tr>
<td>2.1</td>
<td>Fundamentals in Biotechnology</td>
</tr>
<tr>
<td>2.2</td>
<td>Agriculture</td>
</tr>
<tr>
<td>2.3</td>
<td>Medicine</td>
</tr>
<tr>
<td>2.4</td>
<td>Industry</td>
</tr>
<tr>
<td>2.5</td>
<td>Environment</td>
</tr>
<tr>
<td>2.6</td>
<td>Social aspects</td>
</tr>
<tr>
<td>3</td>
<td>Future Development</td>
</tr>
</tbody>
</table>

#### Fundamentals in Biotechnology

Edgar J. DaSilva, *International Scientific Council for Island Development, France*

Horst Werner Doelle, *MIRCEN-Biotechnology, Australia*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Cell Characteristics</td>
</tr>
<tr>
<td>3</td>
<td>Cell Cultivation</td>
</tr>
<tr>
<td>4</td>
<td>Chemical Functions</td>
</tr>
<tr>
<td>5</td>
<td>Mutation and Gene Technology</td>
</tr>
<tr>
<td>6</td>
<td>Biosafety</td>
</tr>
</tbody>
</table>

#### Microbial Cell Culture

Horst Werner Doelle, *MIRCEN-Biotechnology, Australia*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Nutrition</td>
</tr>
<tr>
<td>2.1</td>
<td>Macronutrients</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Carbon Source</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Nitrogen Source</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Sulfur Source</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Phosphorous Source</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Others</td>
</tr>
<tr>
<td>2.2</td>
<td>Micronutrients</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Tracer elements</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Iron</td>
</tr>
<tr>
<td>2.3</td>
<td>Growth Factors</td>
</tr>
<tr>
<td>2.4</td>
<td>Medium Composition</td>
</tr>
<tr>
<td>3</td>
<td>Growth</td>
</tr>
<tr>
<td>3.1</td>
<td>Measurement</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Optical Measurement</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Cell Count</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Cell Constituents</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Optimization</td>
</tr>
<tr>
<td>4</td>
<td>Cultivation Systems</td>
</tr>
<tr>
<td>4.1</td>
<td>Batch Cultivation</td>
</tr>
</tbody>
</table>
Algal Cell Culture

Peter A. Thompson, University of Tasmania, Australia

1. Introduction
2. Cell culture characteristics
   2.1 General considerations
      2.1.1 Morphology
      2.1.2 Physiology
      2.1.3 Reproduction
   2.2 Habitats
   2.3 Isolation
   2.4 Culture purification
   2.5 Sampling and counting algal cells
   2.6 Aseptic culture transfers
3. Growth and nutrition
   3.1 General remarks
   3.2 Artificial media
   3.3 Enriched natural waters
   3.4 Water supply and processing
   3.5 Illumination
   3.6 Preparation and use of glassware and other materials
4. Cultivation techniques
   4.1 General considerations
   4.2 Stock cultures
   4.3 Batch cultivation
      4.3.1 Lag phase
      4.3.2 Exponential phase
      4.3.3 Declining growth
      4.3.4 Stationary phase
      4.3.5 Death phase
   4.4 Semicontinuous cultivation
   4.5 Continuous cultivation
      4.5.1 Chemostats
      4.5.2 Turbidostats
      4.5.3 Cyclostats
   4.6 Final remarks on culture systems
5. Selected organisms
   5.1 Cyanobacteria
   5.2 Dunaliella salina
   5.3 Some other aquaculture species
6. Scale-up considerations
   6.1 Light
   6.2 Nutrient inputs
   6.3 Waste products
   6.4 Contamination
      6.4.1 Other algal species
      6.4.2 Pests
6.4.3 Predators

7. Production system classified by product type
   7.1 High value, low volume, intensive culture
   7.2 Lower value, greater volume
   7.3 Live feeds

8. Scale-up technology
   8.1 Harvesting
   8.2 Drying

9. Molecular algal biotechnology

---

**Plant Cell Culture**
Mary Bridget Taylor, *South Pacific Commission, Fiji*

1. Introduction
2. The Basics of Plant Cell Culture
3. Propagation of Plant Material
   3.1 Micropropagation
   3.2 Somatic Embryogenesis
4. Plant Improvement
   4.1 Callus and Suspension Cultures
   4.2 Protoplast Fusion
   4.3 Haploid Culture
   4.4 Embryo Rescue
5. Conservation
   5.1 Embryo Culture
   5.2 Germplasm Storage In Vitro
6. Utilization of Plant Germplasm
   6.1 Germplasm Exchange
   6.2 Production of Secondary Metabolites

---

**Mammalian Cell Culture**
Christopher P. Marquis, *The University of New South Wales, Australia*

1. Introduction
2. A brief history of mammalian cell culture
3. Primary and continuous cultures
   3.1 Primary Cultures
   3.2 Continuous Cell Lines
   3.3 Organ culture
   3.4 Some useful cell lines
      3.4.1 CHO Cells
      3.4.2 VERO cells
      3.4.3 Sp2/0 myelomas
4. Methods in mammalian cell culture
   4.1 Media and environment
      4.1.1 Media
      4.1.2 Environment
   4.2 Bioreactor design
      4.2.1 Anchorage-dependence
      4.2.2 Surfaces for tissue culture growth
      4.2.3 Bioreactor Types
5. Applications of cell culture in virus production
   5.1 Viral Vectors for Gene Therapy
   5.2 Key areas for future development of cell culture related to gene therapy
6. Application of cell culture in biopharmaceutical production
   6.1 Antibodies for human therapy
7. Tissue engineering and cell culture
   7.1 Bone and Cartilage
   7.2 Hepatic cell culture
   7.3 Haematopoietic stem cell culture

Cell Thermodynamics and Energy Metabolism
Horst Werner Doelle, MIRCEN-Biotechnology, Australia

1. Introduction
2. Concepts of Thermodynamics
   2.1 First Law of Thermodynamics
   2.2 Second Law of Thermodynamics
   2.3 Free Energy
   3.1 Principles of Electron Transfer and Transport
   3.2 Proton-translocating Electron Transport Chain
   3.3 Proton-translocating ATPase Complex
4. Concepts of Membrane and Solute Transport
   4.1 Passive Diffusion
   4.2 Facilitated Diffusion
   4.3 Active Transport
   4.4 Group Translocation
5. Concepts of Energy Metabolism
   5.1 Photosynthesis
   5.2 Aerobic Respiration
   5.3 Anaerobic Respiration
   5.4 Fermentation
6. Concept of Enzyme Catalysis

Basic Strategies of Cell Metabolism
Horst Werner Doelle, MIRCEN-Biotechnology, Australia

1. Introduction
2. Polymer hydrolysis
   2.1 Starch hydrolysis to glucose
   2.2 Cellulose
   2.3 Proteins
   2.4 Fats
3. Aerobic catabolism
   3.1 Carbohydrates
   3.2 Amino Acids
   3.3 Fatty Acids
   3.4 Hydrocarbon
   3.5 Single Carbon Compounds
4. Anaerobic catabolism
   4.1 Carbohydrates
     4.1.1 Ethanol formation
     4.1.2 Acetate, Butyrate, Acetone and butanol formation
     4.1.3 Organic acid formation
       4.1.3.1 Propionic and succinic acid formation
       4.1.3.2 Malo-lactic fermentation
       4.1.3.3 Diacetyl, acetoin and butanediol formation
   4.2 Proteins and amino acids
     4.2.1 Single Amino Acids
     4.2.2 Pairs of amino acids
     4.2.3 Single amino acids in combination with keto acids
   4.3 Fatty acids
4.4 Methane formation

5. Anabolism (biosynthesis) of cellular components
   5.1 Autotrophic carbon assimilation
   5.2 Protein biosynthesis
   5.3 Ribonucleic acid [RNA] and Deoxyribonucleic acid [DNA]
   5.4 Lipid formation
   5.5 Cell Wall Formation

6. Metabolic Regulation
   6.1 Enzyme Activity Regulation
       6.1.1 Substrate availability
       6.1.2 Cofactor availability
       6.1.3 Product removal and Feedback inhibition
   6.2 Enzyme Synthesis Regulation
       6.2.1 Repression of enzyme synthesis
       6.2.2 Induction of enzyme synthesis
       6.2.3 Constitutive enzymes
       6.2.4 Catabolite repression
8. Conclusions

**Bioinformatics**
Bojana Boh, *University of Ljubljana, Slovenia*

1. Introduction
2. Levels of information processing
3. Traditional information support in biosciences: bibliographic databases
4. Value added processing of databases
5. Factual databases in biosciences
6. Nucleic Acid Research and Genomics
7. Protein Research and Proteomics
8. Higher levels of information processing

**Microbial Chemistry**
Horst W. Doelle and Monica Wilkinson, *MIRCEN-Biotechnology Brisbane and Pacific Regional Network, Brisbane, Australia*

1. Introduction
2. General Consideration
3. Metabolism
   3.1. Thermodynamics
   3.2. Aerobic Metabolism
   3.3. Anaerobic Metabolism
   3.4. Anabolism (biosynthesis) of cellular components
   3.5. Metabolic Regulation
4. Microbial Chemistry in Nature
   4.1. Carbon
   4.2. Nitrogen
      4.2.1. Nitrogen Fixation
      4.2.2. Symbiotic Nitrogen Fixation
      4.2.3. Ammonification
      4.2.4. Nitrification
      4.2.5. Denitrification
   4.3. Sulfur Cycle
      4.3.1. Oxidative Sulfur Transformation
      4.3.2. Reductive Sulfur Transformation
   4.4. Phosphorous Cycle
   4.5. Iron Cycle
5. Microbial Interactions
   5.1. Interactions Amongst Microorganisms
      5.1.1. Synergism
      5.1.2. Mutualism or symbiosis
   5.2. Microorganism-Plant Interactions
      5.2.1. Beneficial Interactions. Symbiotic Nitrogen Fixation
      5.2.2. Rhizosphere
      5.2.3. Mycorrhiza
      5.2.4. Detrimental Interactions
   5.3. Microorganism - Animal Interactions
6. Human and Microbial Chemistry
7. Biotechnology Applications

Index

About EOLSS