PHYTOCHEMISTRY AND THERAPEUTIC POTENTIAL OF TURMERIC (Curcuma longa)

Sayantani Chanda
Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India

T.V.Ramachandra
Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India

Keywords: Curcuma longa, Golden Spice. Taxonomical Classification, Therapeutic Uses, alkaloids, glycosides, terpenoids, steroids, flavonoids, tannins and saponins, Anti-oxidant, Anti-diabetic, Anti-microbial, Vitamin C.

Contents

1. Introduction
1.1. Curcuma longa
1.1.1. General Description
2. Geography and Distribution
3. History
4. Taxonomical Classification
5. Morphology of Curcuma longa
5.1. Leaves
5.2. Flowers
5.3. Rhizome
5.4. Seed
5.5. Flowering and fruiting
6. Nutritive Value
7. Phytoconstituents
8. Laboratory Tests to Assess the Presence of Phytochemicals in Curcuma longa
8.1. Alkaloids
8.2. Glycosides
8.3. Flavonoids
8.4. Tannins
8.5. Saponins
8.6. Triterpenoids
8.7. Phenols
8.8. Fats and Fixed Oils
8.9. Proteins and Amino Acids
8.10. Carbohydrates
9. Pharmacological Properties
9.1. Immuno-modulatory Properties
9.2. Anti-inflammatory Properties
9.3. Antimicrobial Properties
9.4. Antiviral Activity
9.5. Antifungal Activity
9.6. Antibacterial Activity
Summary

Medicinal plants are rich resources of materials with ingredients of therapeutic value. They have a vital role in traditional medicines and also in the development of new drugs. The role of medicinal plants in healthcare, cultural values and well-being of people is acknowledged in many regions of the world. It is a fact that demand for herbal medicines is about 80% of population and is growing as the people are increasingly depending on herbal medicines. Herbal medicines are very effective, economically viable and useful as alternative to allopathic medicines due to the absence of additional medical complications.

This chapter presents the medicinal properties of plants in addressing many ailments and diseases including COVID 19, the rampant global pandemic. Section 1 introduces the medicinal importance of plants, followed by phytochemical, nutritional, pharmacological and major therapeutic uses of *Curcuma longa* of Zingiberaceae family. Recent developments and findings are presented to support these.

1. Introduction

Humans have been using plant parts as a phytomedicine for thousands of years in the past. Plants have bioactive constituents as primary and secondary compounds. Secondary metabolites are both chemically and taxonomically different compounds, and are being used in many areas like human therapy, agriculture, scientific research, veterinary applications and many other areas. According to the World Health Organization (WHO) nearly 80% of the people in developed countries use allopathic medicines derived from medicinal plants (Pawar et al, 2015). Different parts of the plants, such as roots, stems, leaves, flowers, fruits or seeds are rich in phytochemicals and also the outer layer of plant tissue that consists of pigmented molecules (Saxena et al, 2013). The accumulation of bioactive phytochemicals in the plant tissue constitutes primary and secondary metabolites, contributing to pharmacological potential of medicinally important plants. Primary metabolites are essentially organic compounds such as glucose, starch, polysaccharide, protein, lipids and nucleic acid, which aid in the growth and development in humans, while secondary metabolites are pharmacologically active compounds such as alkaloids, flavonoids, saponins, terpenoids, steroids, glycosides, tannins, volatile oils etc., which play an important role in curing diseases (Egamberdieva et al, 2016; Shakya, 2016). Secondary plant metabolites are classified based on their chemical structure (sugar), biosynthetic pathways (tannins) chemical composition (nitrogen), or their solubility in various solvents. Figure 1(a) shows the bioactive ingredients of plants in general.

Phytochemical composition of secondary metabolites includes the following:

(a) **Alkaloids:** These are generally present in higher plants (in whole plant or certain organs), particularly in dicots, but usually minimal in lower plants. Alkaloids are derivates of amino acids with one or more carbon rings (for example nitrogen). The position of nitrogen atom in the carbon ring determines alkaloids (Egamberdieva et al, 2016). Therapeutically alkaloids are antispasmodic, immunoregulative, cerebro-
protective, anti-mutagenic, vaso-relaxing, antioxidant, antimalarial, analgesic, and diuretic (Bibri, 2018).

(b) Terpenes: These are hydrocarbons in which terpenoids are either altered chemically or denatured by oxidation. Modified terpenes with either removal or moving of methyl groups or addition of oxygen atoms constitute terpenoids. Terpenoids are therapeutically antiviral, anthelmintic, antibacterial, anticancer, inhibition of cholesterol synthesis, antimalarial, anti-inflammatory, etc.

(c) Glycosides: These are known for their antifungal and antibacterial properties, corticoid and anti-inflammatory effects. They constitute two molecules of (i) sugar which is primarily D-glucose, and Lrhamnose, L-fructose, etc., (ii) aglycone composed of flavonoid or a terpene. Aglycones are part of cardiac glycosides which are found in a number of plants and are highly toxic. Aglycones of cardiac glycosides can be categorized as (a) cardenolides and (ii) bufadienolides.

(d) Flavonoids with varying phenolic structures contribute to antioxidant, anti-allergic, antibacterial anti-microbial, anticancer, cardioprotective, antihypertensive, antiulcerogenic, antidiabetic properties among others. Based on the position of the
benzenoid substituent such as flavone (2-position) and isoflavone (3-position), flavonoids are divided into two classes.

(c) Saponins are chemically classified as glycosylated steroids, triterpenoids, and steroid alkaloids, which are present widely in monocots, and less frequent in dicots. The therapeutic values of saponins are anti-inflammatory, antiviral, plant defense activities, haemolytic activity (Maurya et al, 2008; Chopra and Doiphode, 2002; Saxena et al, 2013; Clement et al, 2014). An aglycone is the residual compound of the glycosyl group with the replacement of a glycoside by hydrogen atom. Derivatives of steroid aglycones are spirostan and furostan. Sapogenin (aglycone) links with the carbohydrate, consisting of one or more sugar moieties containing glucose, galactose, xylose, arabinose, rhamnose, or glucuronic acid glycosidically is the part that saponins contain.

Therapeutic values of the medicinal plants have been useful in herbal medicine for the treatment of many ailments in humans and animals. The significance of naturally occurring plants of medicinal plants continues to be the economic and therapeutic value to humankind and hence they continue to be important sources for new drug development throughout the world. The global biodiversity hotspot – the Western Ghats in India is a repository of exceptional diversity of biota (plants and animals) with immense medicinal values and only a fraction of this diversity is explored and a major fraction of plants is yet to be described taxonomically and also for phytochemical compositions. Medicinal values of plants are evident from the immunity acquired by humans in the Western Ghats for ensuring diverse plants in the daily diet and hence the region has reported lesser instances of COVID 19 among the residents of the Western Ghats. Daily food preparation with spices, turmeric (Curcuma longa), etc. has been an integral part of their diet. However, accentuated deforestation due to unplanned developmental activities is fragmenting the contiguous intact native forests and also large scale transition to monoculture species plantations of exotic species has not only altered hydrologic regime (Ramachandra et al, 2019), but also threatened the survival of ecologically fragile habitats in the Western Ghats leading to the extirpation of plants and animals of vital conservation importance. Curcuma longa consisting of various bioactive compounds is one of the most potent medicinal plants, for their value in therapeutic uses.

1.1. Curcuma longa

1.1.1. General Description

Curcuma longa is a perennial erect and leafy herb; it belongs to the Zingiberaceae family, and is used widely by the traditional medical practitioners for the treatment of various ailments. Turmeric is a product of Curcuma longa, and the yellow powder (curcumin) extracted from rhizome is used for medicinal purposes and also in religious practices. The genus name Curcuma which was included dates back to the ancient Indian “kunkumam”(saffron)” or turmeric from middle India. The yellow saffron of rhizomes - long roots of this plant - grow like fingers slanting downwards. Dried Curcuma longa is the source of the spice turmeric used widely in curry powder and condiments.
Turmeric and other members of the Zingiberaceae are sterile plants and reproduce by asexual clonal propagation of the rhizomes. The genus *Curcuma* includes various other essential economically important species, including *C. angustifolia* (wild arrowroot, narrow-leaved turmeric), *C. amada* (mango ginger), *C. zedoaria* (zegoary) and *C. aromatica* (Cochin turmeric, wild turmeric).

(2b). Fresh turmeric rhizome and powder from dried rhizome

Figure 2. *Curcuma longa*

2. Geography and Distribution

Curcuma longa originated and spread throughout tropical and subtropical regions and is cultivated widely in Asia - India and China.

3. History

The use of turmeric dates back to nearly 4000 years to the Vedic times in India, where it was used as a culinary spice and also had some religious significance. It probably reached China by 700 AD, East Africa by 800 AD, West Africa by 1200 AD, and Jamaica in the eighteenth century. According to Sanskrit medical treatises and Ayurvedic and Unani systems, turmeric has a long history of medicinal use in South
Asia. Susruta’s Ayurvedic *Compendium*, dating back to 250 BC, prescribes an ointment of turmeric to relieve the effects of food poisoning (Prasad and Aggarwal, 2011).

<table>
<thead>
<tr>
<th>Countries</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Haldi, halud, arisinia</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Haldi, halud</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Haldi</td>
</tr>
<tr>
<td>Myanmar</td>
<td>nanwin</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Kunyit, temu kuniyit</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Koneng, kunir, kuniyit, tius</td>
</tr>
<tr>
<td>Thailand</td>
<td>Khamin, khamin-chan</td>
</tr>
<tr>
<td>China</td>
<td>jiang huang</td>
</tr>
<tr>
<td>Japan</td>
<td>Ukon, Tamerikku</td>
</tr>
<tr>
<td>United States</td>
<td>Indian saffron, turmeric</td>
</tr>
<tr>
<td>Russia</td>
<td>Koren, kurkumy, Kurkuma</td>
</tr>
<tr>
<td>France</td>
<td>Curcuma, Safran des Indes</td>
</tr>
<tr>
<td>Germany</td>
<td>Gelbwurzel</td>
</tr>
<tr>
<td>Italy</td>
<td>Curcuma</td>
</tr>
<tr>
<td>Spain</td>
<td>Curcuma, Azafran arabe</td>
</tr>
<tr>
<td>Portugal</td>
<td>Açafrão da Índia, Curcuma</td>
</tr>
</tbody>
</table>

Table 1. Common Names of *Curcuma longa*

4. Taxonomical Classification

Figure 1(b) shows the taxonomical classification of *Curcuma longa* in a Venn diagram.
Bibliography

Araújo CAC, LL Leon (2001). Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz 96(5),723-8. [This paper provides an overview of pharmacological activities (anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, anti-parasitic, antispasmodic and antioxidant effects etc) of Curcuma showing its importance].

Arvind Kumar Shakya (2016), Medicinal plants: Future source of new drugs, International Journal of Herbal Medicine 4(4): 59-64. [The paper is valuables as it provides information to understand the knowledge of the medicinal plants as a future source of herbal drugs].

Charu. Maknoi (2006) Taxonomy and phylogeny of the genus Curcuma L. (Zingiberaceae) with particular reference to its occurrence in Thailand. Dissertation, Prince of Songkla University, Songkhla, Thailand. This dissertation is very much useful as it provides detail information on morphological characteristics of Curcuma].

Chinampudur V. Chandrasekaran, Kannan Sundarajan, Jothis R Edwin and others (2013). Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction. Pharmacognosy Res 5(2), 71–79. [This experiment performed on mouse which revealed the novel anti-inflammatory property of NR-INF-02 and its polysaccharide fraction by inhibiting the secretion of IL-12 and PGE2 in vitro].

Debjit Bhowmik, K P Sampath Kumar, Margret Chandira, Balasundaram Jayakar (2009). Turmeric: A Herbal and Traditional Medicine, *Archives of Applied Science Research* 1 (2), 86-108. [This journal is very much helpful about the details of different therapeutic uses of turmeric and also uses its remedies in Ayurveda].

Dhulipall Naga Harish, N. Vinutha, PVV. Siva Krishna and others (2016). Phytochemical Evaluation *Curcuma Longa* and Curcumin. *International Journal of Pharmaceutical and Chemical Science* Vol. 5 (4). [This article is focused on medicinal and pharmacological properties of turmeric and also about phytochemical screening].

Duggi Shrishail Handral, harish k, Handral Ravichandra and others, (2013). Turmeric: nature’s precious medicine. *Asian Journal of Pharmaceutical And Clinical Research* Vol 6 issue 3. [The study was intended to review the ethnoveterinary properties, pharmacognostic, phytochemical and pharmacological properties of turmeric plant].

Ewon kaliyadyasa, Bhagya A. Samarasinge (2019). A review of golden species of Zingiberaceae family around the world:Genus Curcuma. *African Journal of Agricultural Research* Vol 14(9), 519-531. [This paper focuses on gathering information regarding genus Curcuma including morphological characteristics, phytochemicals and their biological and pharmacological activities].

http://www.foodofy.com/turmeric.html. [This website provides comprehensive information on history, health benefits and nutrition of turmeric].
http://www.greekmedicine.net/A_Greek_and_Unani_Herbal/herb.php?id=10. [This websites provides information on medicinal properties and uses of turmeric].

http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:796451-1. [This page is useful as it provides information on morphological description as well as general description].

http://www.turmeric.co.in/turmeric_ayurvedic_use.html.[This page provides information on Ayurvedic uses of turmeric].

https://food.ndtv.com/food-drinks/7-health-benefits-of-turmeric-getting-back-to-the-roots-1257827. [This website gives details of seven health benefits].

https://indiabiodiversity.org/species/show/229363. [The website provides information on morphology and common names].

https://indianexpress.com/article/lifestyle/health/raw-turmeric-boost-immunity-benefits-6340737/[The websites provides information on therapeutic uses].

https://vikasnetproject.org/en/Curcuma_longa_(PROTA).[This websites is very much useful as it provides information about geographic distribution, origin and its properties].

https://vikaspedia.in/agriculture/best-practices/animal-husbandry/ethnoveterinary-practices-in-animal-care. [The websites provides an useful information on ethnoveterinary uses of turmeric with other plants].

https://vikaspedia.in/agriculture/livestock/general-management-practices-of-livestock/ethnoveterinary-formulations-for-important-ailments-in-bovines. [The websites provides an useful information of ethnoveterinary uses of turmeric with other plants].

https://www.banyanbotanicals.com/info/ayurvedic-living/learning-ayurveda/vata-pitta-and-kapha/. [This websites provides information on vata, pitta and kapha of Ayurveda].

https://www.cabi.org/isc/datasheet/17014. [The websites provides information on turmeric classification and common names].

https://www.cookist.com/12-serious-side-effects-of-turmeric/. [This websites helps the reader to understand the fact that excessive consumption of turmeric causes side effects].

https://www.dtnext.in/Lifestyle/Wellbeing/2020/03/17144111/1220485/Boost-your-immunity-with-turmeric.vpf. [The websites discussed about the boosting of immunity by making use of turmeric].

https://www.easyayurveda.com/2013/10/23/turmeric-curcuma-longa-benefits. [The websites provides details on information on ayurvedic uses].

https://www.ecrjournal.com/articles/anti-inflammatory-action-curcumin-use. [This website is very much important for the reader which gives a details information on clinical trials of curcumin in the management of inflammation-related diseases].

https://www.everydayhealth.com/diet-nutrition/diet/scientific-health-benefits-turmeric-curcumin/. [This websites provides information on 12 Scientific Health Benefits of Turmeric and Curcumin].

https://www.healthline.com/health/cancer/curcumin-and-cancer#research. [This websites provides a information in regards to the uses of curcumin on cancer].

https://www.ikisan.com/tg-turmeric-morphology.html. [The page is useful for morphological description].

https://www.koop-phyto.org/en/medicinal-plants/turmeric.php.[The websites provides useful information on Turmeric].

©Encyclopedia of Life Support Systems (EOLSS)
https://www.meandqi.com/herb-database/turmeric. [The websites provides a details information about the Chinese uses on turmeric].

https://www.medicalnewstoday.com/articles/306981#Side-effects-of-turmeric. [This website gives details side effects of turmeric].

https://www.mskcc.org/cancer-care/integrative-medicine/herbs/turmeric

https://www.ncbi.nlm.nih.gov/books/NBK92752/cite. [The websites provides information on various names of turmeric/curcumin in different languages].

https://www.nuffieldhealth.com/article/the-health-benefits-of-turmeric. [This website provides information on therapeutic uses].

https://www.nutrition-and-you.com/turmeric.html. [This website is helpful for the reader which provides a information on nutritive value of turmeric].

https://www.rxlist.com/turmeric-supplements.htm. [The websites provides a information about the side effects of turmeric].

https://www.nordicnaturals.com/healthy-science/the-immune-benefits-of-curcumin/. [This website gives the details about the health properties of turmeric in regards to Prebiotic, Cortisol-ameliorating and Omega-3 boosting].

https://www.whiterabbitinstituteofhealing.com/herbs/turmeric/. [The websites provides a details information about the Chinese uses on turmeric].

Nilanjana Deb, Purba Majumdar, Ajoy Kumar Ghosh (2013). Pharmacognostic and Phytochemical Evaluation of the Rhizomes of *Curcuma longa*. *Journal of Pharma Sci Tech* 2(2), 81-86. [The work has been performed to study the phytochemical parameters, which could serve as a measure of authentication and to establish the quality of the various pharmacognostic and control for commercial samples of crude drug].

Nitish Kumar and Sunil Kumar Sakhya (2012). Ethnopharmacological properties of *Curcuma longa*: a review. *International Journal of Pharmaceutical Science and Research* 4(1),03-12.http://dx.doi.org/10.13040/IJPSR.0975-8232.[This paper discusses in detail the basics of clinical indication, pharmacological action, chemical constituents, its nutritional value, morphology and uses of turmeric].

MEDICINAL AND AROMATIC PLANTS OF THE WORLD - Phytochemistry and Therapeutic Potential of Turmeric (Curcuma longa) - Sayantani Chanda, T.V.Ramachandra

Biographical Sketches

Sayantani Chanda Received her B.Sc (Bachelor of Science) degree in Botany from University of Calcutta, Kolkata, India, in the year 2012 and Post-Graduation degree, M.Sc.(Master of Science) in Genetics from West Bengal University of Technology, Kolkata, India in 2014. After that she joined in Energy & Wetlands Research Group, Indian Institute of Science, Bangalore-560012, India, as research intern. She worked there about 2 years. The area of research was Pharmacological, Phytochemical and spatial aspects of plants in Indian sacred groves and its relevance towards maintenance of ecosystem and their sustainable utilization. There after she has been associated with Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India. She is now working in the area of Cultivation and regeneration of medicinal plants by natural as well as tissue culture method and conserve them in their natural habitat. Further she is going to undertake the project on Squalene (C30H50), a naturally occurring highly unsaturated triterpene, is an intermediate in the cholesterol biosynthesis both in plant and animal world. This compound plays various biological roles, therefore makes it a favorite choice in the pharmaceutical, cosmetics and food supplement industries. Basically, in this regard she is interested to explore the rich, natural, renewable and cost-effective sources of squalene from the abscisic leaves of the plants. She published many papers in different national and international journals.
international journal and also taken part in various international conferences. She has been awarded “Young Achiever Award 2020” for her outstanding contribution and recognition in the field of Plant Molecular Genetics from Agricultural and Environmental Technology Development Society, India.

T.V. Ramachandra Received Ph.D. in Ecology and Energy from Indian Institute of Science, Bangalore, India. At present, he is Coordinator of Energy and Wetlands Research Group (EWRG), Convener of Environmental Information System (ENVIS) at Centre for Ecological Sciences (CES). During the past fifteen years he has established an active school of research in the area of energy and environment (http://ces.iisc.ernet.in/energy). He was a Member of Karnataka State level Environment Expert Appraisal Committee (2007-2010), appointed by the Ministry of Environment and Forests, Government of India. He is a recipient of Energy Legend (2011), Energy Engineer (international) 2009 of Association of Energy Engineers (USA), Johny Biosphere Award for Ecology and Environment (2004) and Satish Dhawan Young Scientist Award, 2007 of Karnataka State Government. He is an associate faculty at Centre for Sustainable Technologies (astra) and Centre for infrastructure, sustainable Transportation and Urban Planning (CiSTUP) at Indian Institute of Science. He is an Elected Fellow of the Institution of Electrical Engineers (IEEE, UK; 2005), Indian Association of Hydrologists (India; 2006), Institution of Engineers (IE, India; 2003), and a Senior Member, IEEE (USA; 2000) and Association of Energy Engineers (USA; 2000), National Institute of Ecology (2011). His areas of specialization are on Biodiversity-Ecology-Hydrology linkages, Ecological Modeling, Energy, Wetlands, Soil and Water Pollution, GIS and Remote sensing, Environment Education, Conservation of Terrestrial and Aquatic ecosystems, Environmental Impact Assessment (EIA), Cumulative Environmental Impact Assessment etc. He has published 309 papers in National and International journals and 40 book chapters.