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Summary

A complex energy system may use a variety of primary energy sources and a
combination of various equipment to produce several energy products (useful forms of
energy). The same result (quality and quantity of energy products) can be obtained by
various operating modes. It is of crucial importance to determine the best operating
mode for systems consuming large amounts of natural and economic resources. In this
article, the operation optimization problem is stated in general terms, solution methods
are mentioned in brief, and an example is presented, which demonstrates the importance
of applying operation optimization in energy systems.

1. Introduction
An energy system may produce a variety of products (useful forms of energy) such as
electricity, mechanical work (for example, for propulsion or for driving auxiliary

machinery), steam at various pressure and temperature levels, hot water, cooling, and so
on. For this purpose it may use a combination of equipment (for instance, diesel engines,
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gas turbines, steam boilers, steam turbines, desuperheaters) and a variety of fuels (for
example, coal, diesel oil, natural gas, process-generated fuel gas). For a land installation,
connection to the utility grid allows for importing additional electricity, if needed, or for
exporting surplus electricity.

Due to the variety of energy sources and equipment that can be used to produce the
various useful energy forms (products), the interdependency between sources and
equipment and the variation of technical and economic conditions with time, questions
such as the following arise: For a given system under specified technical, environmental
and economic conditions at any instant of time, which is the best operating mode?

An operating mode, also called “operating point,” is defined by the operating properties
of components and substances in the system (pressure, temperature, composition and
flow rate of each fluid, power of each component, and so on).

The degree of freedom increases if the system is not restricted to cover the loads but can
import or export useful forms of energy, as is the case with a cogeneration system
interconnected with the utility grid.

The complex structure of the system and the interdependency of its components make it
impossible (except in very simple cases) to determine the optimum mode of operation at
various conditions by a heuristic approach or by past experience only. Therefore,
application of an optimization procedure based on a careful analysis of the system is
necessary. A prerequisite of operation optimization is the existence or development of a
mathematical simulation model of the system, validated by actual measurements on the
plant, and the associated data reconciliation.

2. Statement of the Optimization Problem

In order to answer the question raised above, there is need to specify on what basis the
operating mode will be considered as “best,” that is, to specify the optimization criterion,
which is called the “objective function.” For operation optimization in particular,
examples of optimization objectives are the minimization of total fuel consumption,
minimization of operating costs, maximization of revenue, and so on. The mathematical
statement of the optimization problem in general terms is the same as in Optimization
Methods for Energy Systems, so there is no need to repeat it here. The explanations
given in that article about the independent variables and constraints are also applicable
here. Environmental and reliability aspects can be either treated as constraints or
properly quantified and introduced in the objective function.

The optimization problem can be considered either at a particular moment or over a
period of time. In order to clarify the subject, let f(x) be a criterion of performance (for

example, fuel consumption rate, cost rate of owning and operating the system), which,
in general, changes with time. An objective might be the minimization of this criterion
at any instant of time:

m)!n f(X) 1)
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where X is the set of independent variables. Let it be mentioned that maximization (that
is, of savings or profit) is also covered by Eq. (1), since:

min f (x) = max {—f (x)}

Another objective might be the minimization of the total quantity represented by f in a
certain period of time:

i = [f(x)d
min F(x) ! (x)dt (2)

The time period of integration in Eq. (2) is selected at will, for example, day, month,
year, or even the whole lifetime of the system. The function f(x) may change with time

because not only the technical but also the economic conditions may change.

Very often, the period of integration in Eq. (2) can be considered as consisting of N time
intervals of length At, (n =1, 2, ..., N) with steady state conditions in each time

interval. Then, the integral can be replaced by a summation:
N
minF(x) =Y, (x,) At, (3)
X =1

The solution of the optimization problem will specify the mode of operation at any
instant of time, as it is defined by the values of the independent variables x or xp,.

A particular class of operation optimization problems is dynamic optimization during
transient conditions, for example, the optimization of path for load increase or decrease
of a plant. This class is also represented by Egs. (2) and (3).

3. Solution Methods

All methods described in Optimization Methods for Energy Systems can be used for the
solution of the operation optimization problem. A few comments on operation
optimization are made below.

The problem stated by Eq. (1) can be solved by direct application of an optimization
algorithm or by the Functional Approach (described in Functional Analysis and
Optimization Methods for Energy Systems). Often the set x includes both binary or
integer variables (which specify, for instance, whether a unit operates or not), and real
variables for other operating characteristics. A combination of a genetic algorithm with
a linear or nonlinear (depending on the problem) programming algorithm has been
proven successful for the solution of such a problem. An alternative approach is that the
use of a mixed integer linear or nonlinear programming algorithm can be used.

For the problem stated by Eq. (3), there are two characteristic cases:

= If the operation in each and every time interval does not affect and it is not
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affected by the operation in other time intervals, then decomposition is
applicable, which in this case is performed with respect to time intervals (see
Optimization Methods for Energy Systems). The optimization problem in each
time interval is similar to the one described by Eq. (1).

= |f there is interdependency between time intervals, it is necessary to apply
dynamic programming techniques.

The problem stated by Eq. (2) can be solved by calculus of variations, except if it can be
written in the form of Eq. (3).

4. Application Example

An application example, which is both instructive and of significant practical
importance, is presented here. More examples for the various cases mentioned in the
preceding section can be found in the bibliography.

4.1. Description of the Energy System

A combined cycle cogeneration system covers the needs of a refinery in electricity and
steam at four grades (Table 1). Interconnection with the utility grid allows for the
purchase of extra electricity, if needed, and sale of surplus electricity, if it is available
and economical.

Grade Pressure Temperature
designation kPa (absolute) °C
Sl 4240 410
S2 1350 320
S3 370 150
S4 470 160

Table 1. Steam grades used in the refinery

The system consists of the following main components (Figure 1):
= Two gas-turbine electricity generators (GT-1, GT-2),
= Two exhaust-gas boilers (EGB-1, EGB-2) recovering heat from the gas turbine
flue gases,
= One steam-turbine electricity generator (ST), and
= Four steam boilers.

A brief description of these components follows.

= Gas-turbine electricity generators. These have a nominal electricity production
capacity of 17 MW each. They can operate on diesel oil, fuel gas, propane, or a
combination of fuel gas and propane. Diesel oil is normally used for start-up
only.

= Exhaust-gas boilers. Each boiler has a nominal production capacity of 30 t h™" of
high-pressure steam (S1) and 7 t h™ of low-pressure stream (S5). There is no
supplementary firing.
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= Steam-turbine electricity generator. This uses high-pressure steam (S1) and has
a nominal capacity of 16 MW.

= Steam boilers. These use fuel oil and produce high-pressure steam (S1). There
are two boilers with a nominal capacity of 30 t h™' each, and two boilers with a
nominal capacity of 60 t h™ each. Thus, the total steam capacity of the four
boilers is 180 t h™.
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Figure 1. Simplified diagram of the combined-cycle cogeneration system

The main components are served by auxiliary equipment such as a compressor to
increase the pressure of low-pressure fuel gas from 370 kPa to 2300 kPa, a propane
vaporizer, water demineralization units, condensate collection and treatment units, and
SO on.
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