
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

MACHINE LANGUAGE

David R. Kaeli
Department of Electrical and Computer Engineering, Northeastern University, USA

Keywords: microperations, data path, assembly code, binary format, microcontroller,
microcode, macroinstruction,

Contents

1. Summary
2. Introduction
2.1 Assembler Directives
3. Assembly Language
3.1 ELF
3.2 COFF
3.3 Java Class File
4. Binary Code
4.1 Microcode
4.2 Control storage
4.3 Microinstruction decoding
4.4 Macroinstructions
4.5 Optimizations
5. Conclusion
Glossary
Bibliography

Summary

Machine Language is the representation of a program that either executes directly on the
central processing unit or is represented in an assembly language that is later compiled
down to binary code. This article discusses machine language, its different forms, and
the microarchitectural data path that supports the execution of the machine language.

1. Introduction

Computer applications are written at different levels of abstraction, including high-level
languages, assembly code, and binary code. High-level languages such as C, C++ and
Java, provide an abstract view of a computing system. These languages depend upon
either a compiler or an interpreter to carry out the desired operations as specified in the
program. High-level languages are eventually transformed into binary code, which can
be executed directly on the underlying hardware. The use of high-level languages has
increased the productivity of the programmer, and has provided software developer with
an efficient abstraction from the underlying computer system.

Assembly code is a language that provides a symbolic (readable) intermediate version
of the program. Programmers can implement their applications in assembly code. This

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

model is commonly used in the embedded computing field, where a small, compact
program controls the underlying hardware.

Binary code is a machine-readable form of the assembly code. While binary
instrumentation systems are able to write binary code, typically programmers develop
their applications at a higher level. There exist standard formats for binary code,
including image formats, data layout, and the target instruction set of the computer.

Both binary and assembly code are forms of machine language. This article will
provide an overview of a typical assembly language, as well as a description a typical
binary code format. Finally, we will discuss how the machine language is executed on
the hardware, and describe some of the issues associated with machine code execution.

2. Assembly Language

An assembly language (sometimes referred to assembler or assembly) provides the
program almost complete control with the actual realization of their program. The
benefits of writing in assembly code are that the programmer has a lot more control over
the contents of the final binary code. The assembler (the program which transforms
assembly code to binary code) can still apply some optimizations, though the executed
binary code will closely resemble the assembly code.

An assembly language provides the programmer with a set of well-defined primitives.
These primitives are expressed on a single line in the program. Each lines contains
three fields:

 A label that is used to identify unique points in the program,
 An instruction that specifies the operation desired (including operands), and
 A comment, indicating the purpose or ramifications of executing this instruction.

While fields 1 and 3 are optional, every line in an assembly language contains an
instruction field.

High-level languages will generate multiple assembly instructions per source code line,
while a single binary level instruction. Presently, most embedded software is developed
in assembly since the program has a lot more control over the final binary.

The reason why many programmers also use high-level languages is a tradeoff between
high performance and productivity.
The reason why programmers do not write their programs at the binary level is that they
can still obtain the control over the final binary by writing in assembly code, though
they do not have to worry about the actual bit values in each instruction, and can instead
work with symbols (e.g., Loop1) and instruction operation abbreviations (e.g., MOV,
ADD and CMP, to denote move, addition and compare operations, respectively).

Note that the above assembly program is written in a format that is compatible with a
particular assembler. Each assembler will demand a particular specification of the
assembly code format. The code can be assembled and run on a number of different

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

versions of the Intel 80X86 microprocessor family (e.g., the 80486, PentiumI, PentiumII,
PentiumIII, PentiumIV, etc.).

Figure 1 shows an example of an assembly code format.

2.1 Assembler Directives

To raise the abstraction level in assembly-level programming, assembler directives (i.e.,
macros) can be used. These directives are used tell the assembler to perform some task.
Some of these tasks include allocating storage, aligning code or data on a memory
boundary, or performing conditional execution of portions of a program.

Figure 2. An example of assembly directives for the Intel Pentium

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

In Figure 2 we provide an example of assembly directives. The first two lines tell the
assembler to allocate enough storage for two doublewords (a doubleword on the Intel
Pentium is 32 bits), give these locations the labels of A and B, and initialize their values
to 100 and 200, respectively. Most assembly languages provide the programmer with a
number of shortcuts that reduce the

3. Binary Code

Once programs have been compiled, they will generate object files. A single program
many comprise many object files. These files are linked together to form an executable
binary. There are a number of formats for executable files. Some of these include

ELF
COEFF
Java Class File

3.1 ELF

The executable and linking format (ELF) was originally developed by Unix System
Laboratories and is now a very popular executable file format. ELF is the default binary
format on operating systems such as Linux and Solaris. ELF executable files contain
executable code, sometimes referred to as text and data sections. Each executable
image contains tables, which describe how the image should be mapped into virtual
memory. Some of the capabilities of ELF include: dynamic linking, dynamic loading,
imposing runtime control on a program, and an improved method for creating shared
libraries. The ELF representation of control data in an object file is platform
independent, an additional improvement over previous binary formats. The ELF
representation permits object files to be identified, parsed, and interpreted similarly,
making the ELF object files compatible across multiple platforms and architectures of
different size.

The three main types of ELF files are executable, relocatable, and shared object files.
These file types hold the code, data, and information about the program that the
operating system and/or link editor needs to read. The three types of files are
summarized as follows:

 An executable file supplies information necessary for the operating system to
create a process image suitable for executing the code and accessing the data
contained within the file.

 A relocatable file describes how it should be linked with other object files to
create an executable file or shared library.

 A shared object file contains information needed in both static and dynamic
linking.

3.2 COFF

The Common Object File Format (COFF) is the format used by Microsoft for its object
files. A full specification of COFF can be found at the Microsoft Developer Network.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

Each COFF executable will contain the following structures:

 File Header – contains an overview of the file and controls the layout of other
sections

 Optional Header – used to store the instruction pointer address for executable
files

 Section Header - maintains the location and size information about code and
data sections

 Section Data - contains code and data for the program
 Relocation Directives – contains fix-up information needed when relocating a

section
 Line Numbers – holds the address of each line number in the code/data section
 Symbol Table – contains symbol information relating locations in the source

code to code in the executable
 String Table – stores symbol names

Some of the main features of COFF include:

 applications can add system-dependent information to the object file without
causing access utilities to become obsolete

 space is provided for symbolic information used by debuggers and other
applications, and

 programmers can modify the way the object file is constructed by providing
directives at compile time

-
-
-

TO ACCESS ALL THE 11 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

1. (1985). IEEE Standard for Microprocessor Assembly Language. (IEEE Std. 694-1985), New York,
NY, Institute of Electrical and Electronic Engineers [IEEE specification of microprocessor assembly
language format]

2. Irvine K.R. (1999). Assembly Language for Intel-Based Computers, 3rd edition, Prentice Hall, Upper
Saddle River, NJ [A reference guide for assembly code targeting the 80X86 family of microprocessors.]

3. Microsoft Developers Network, http://msdn.microsoft.com [Extensive information on the COFF
binary format.]

4. (1990). UNIX Software Operations, UNIX System V Release 4 Programmers Guide: Ansi C and
Programming Support Tools, STREAMS, Prentice Hall [Extensive information on the ELF binary format.]

5. Venners B. (1996). The Java Class File Lifestyle, Artima Software Company [Extensive information
on the Java Class File format.]

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-45-03-05

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Machine Language - David R. Kaeli

©Encyclopedia of Life Support Systems (EOLSS)

6. Wilkes M.V. (1951). The Best Way to Design an Automatic Calculating Machine, Report of
Manchester University Computer Inaugural Conference, 16-18, July [The seminal work on
microprogramming.]

7. Mano M.M. and Kime C.R. (2000). Logic and Computer Design Fundamentals, 2nd edition,
Prentice-Hall, Inc., Upper Saddle River, NJ [A standard reference for machine organization and design.]

8. Tannenbaum A.S. (1990). Structured Systems Architecture, 3rd edition, Prentice Hall, Upper Saddle
River, NJ [A standard reference for machine organization and design.]

9. Stallings W. (2000). Computer Organization and Architecture, 5th edition, Prentice Hall, Upper
Saddle River, NJ [A higher level text on computer architecture.]

10. Hennessy J.L. and Patterson D.A. (1996). Computer Architecture: A Quantitative Approach, 2nd
edition, Morgan Kaufman, San Francisco, CA [An advanced text on computer architecture.]

11. Patterson D.A. and Hennessy J.L. (1994). Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufman, San Francisco, CA [An intermediate level text on
computer architecture.]

